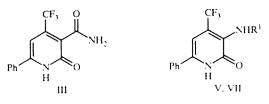

7-TRIFLUOROMETHYL-5-PHENYL-2-OXO-(1H)-OXAZOLO[5,4b]PYRIDINE AND SOME OF ITS PROPERTIES

M. V. Yure, D. V. Shantare, and É. Yu. Gurdinietse

The potassium salt of 7-trifluoromethyl-5-phenyl-2-oxooxazolo[5,4-b]pyridine (IV) was prepared from 3aminocarbonyl-4-trifluoromethyl-6-phenyl-2(1H)-pyridone by the Hofmann reaction and was converted into 3amino-4-trifluoromethyl-6-phenyl-2(1H)-pyridone without isolation. 1-Substituted 7-trifluoromethyl-5-phenyl-2oxooxazolo[5,4-b]pyridines were formed by alkylation of salt IV. 6-Halogeno-7-trifluoromethyl-5-phenyl-2-oxo-(1H)-oxazolo[5,4-b]pyridines have been prepared.

In contrast to the 2-oxooxazolo[4,5-b]pyridines, the synthesis, properties and biological activities of the 2-oxooxazolo[5,4-b]pyridines have been little studied [1-4]. The first derivative of 2-oxooxazolo[5,4-b]pyridine — its 6-arsinic acid — was prepared by acylating 3-amino-2(1H)-pyridone-5-arsinic acid with phosgene [1]: subsequently phosgene was replaced by bis(trichloromethyl) carbonate [5]. A single stage method for preparing 2-oxo-(1H)-oxazolo[5,4-b]pyridine (I) itself consisted of acylation 3-amino-2(1H)-pyridone with bis(trichloromethyl) carbonate ("triphosgene"), or with carbonyldiimidazole in the presence of base at -78 °C [2, 3].


II $\mathbb{R}^{1} - \mathbb{R}^{2} - \mathbb{H}$; IV $\mathbb{R}^{1} - \mathbb{K}$, $\mathbb{R}^{2} - \mathbb{H}$; Vla $\mathbb{R}^{1} - \mathbb{H}$, $\mathbb{R}^{2} - \mathbb{C}$, b $\mathbb{R}^{1} - \mathbb{H}$, $\mathbb{R}^{2} - \mathbb{B}$ r; Vlll a $\mathbb{R}^{2} - \mathbb{H}$, $\mathbb{R}^{1} - \mathbb{C}$ H3, b $\mathbb{R}^{1} - \mathbb{C}_{2}$ H5, c $\mathbb{R}^{1} - n$ -C3H7, d $\mathbb{R}^{1} - n$ -C4H9, e $\mathbb{R}^{1} - n$ -C5H11, f $\mathbb{R}^{1} - i$ -C5H11, g $\mathbb{R}^{1} - \mathbb{C}$ H2CH-CH2, h $\mathbb{R}^{1} - \mathbb{C}$ H2CD2Me

We have previously reported that 5,7-disubstituted 2-oxooxazolo[5,4-b]pyridines were obtained in high yield from the corresponding 3-aminocarbonyl-2(1H)-pyridones by the Hofmann reaction [4]. In a continuation of this work we have studied more thoroughly the babavior of 3-aminocarbonyl 4-trifluoromethyl-6-phenyl-2(1H)-pyridone (III) in the Hofmann reaction and we have investigated the properties of the 2-oxooxazolo[5,4-b]pyridine (II) obtained and its potassium salt IV.

In contrast to the report of Rufenacht et al. [6], we found that reaction of aminocarbonylpyridone (III) under Hofmann conditions at room temperature for 1 h gave the potassium salt of 2-oxoazolopyridine (IV) as its hydrate. The water of hydration was lost on heating the hydrate of IV to 105° C. When the reaction mixture was heated to $80-90^{\circ}$ C without isolating the intermediate IV a readily separable mixture of the amine V and the salt IV was obtained (~3.5:1).

7-Trifluoromethyl-5-phenyl-2-oxo-(1H)-oxazolo[5,4-b]pyridine, identical to that prepared previously [4], was isolated on acidification of an aqueous solution of the potassium salt IV. 6-Chloro- and 6-bromo-derivatives (VIa and VIb respectively) were obtained by halogenating the oxazole II.

Riga Technical University, Riga, LV-1048. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 542-545, April, 1996. Original article submitted November 10, 1995.

 $V R^1 = H. VII R^1 = COOEt$

Boiling the oxazole II in a mixture of ethanol and DMF gave 3-ethoxycarbonylpyrimidone (VII). Study of cleavage of the oxazole ring is continuing.

N-Substituted 2-oxooxazolo[5,4-b]pyridines prepared by alkylation of the oxazolopyridine I with alkyl halides in DMF solution in the presence of a base [2, 3] have analgesic properties but do not have antinociceptive effects [3].

We used the hydrated potassium salt IV to prepare N substituted 2-oxooxazolo[5,4-*b*]pyridines VIII. When IV was heated in DMF solution with alkyl halides, benzyl chloride, and methyl chloroacetate the N-substituted oxazolopyridines VIIIa-i were obtained in good yields. Alkylation can also be done in ethanol solution but the yields of the N-alkyl derivatives are somewhat reduced, e.g., the N-allyl derivative VIIg was obtained in 74% yield. The yields of compounds VIIIa and VIIIf were increased to 93 and 79% respectively alkylating the anhydrous salt IV in absolute DMF.

Using 3-aminocarbonyl-4-trifluoromethyl-6-phenyl-2(1H)-pyridone as an example we have shown that it is possible to synthesize 2-oxooxazolo[5,4-*b*]pyridines via the Hofmann reaction. Alkylation of the potassium salt of 7-trifluoromethyl-6-phenyl-2-oxo-(1H)-oxazolo[5,4-*b*]pyridine is a suitable preparative method for the 1-substituted derivatives.

EXPERIMENTAL

¹H NMR spectra of CDCl₃ and DMSO-D₆ solutions with TMS as internal standard were recorded with a Bruker WH-90-DS (90 MHz) spectrometer. IR spectra of Nujol (1800-1500 cm⁻¹) and hexachlorobutadiene mulls (3600-2000 cm⁻¹) were recorded with Specord 71A spectrometer. The course of reactions and the purity of compounds obtained were monitored by TLC on Silufol UV-254 strips.

Elemental analyses for C, H, N, and halogen agreed with calculated values.

Properties of compounds IV-VIII are give in Table 1.

Potassium 7-Trifluoromethyl-5-phenyl-2-oxo-(1H)-oxooxazolo[5,4-b]pyridine Hydrate(IV, $C_{13}H_6F_3KN_2O_2\cdot 2H_2O$). A solution of 3-aminocarbonyl-4-trifluoromethyl-7-phenyl-2(1H)-pyridone (III) (5.6 g, 20 mmole) in 10% KOH (100 cm³) heated to 70-75°C was added slowly with constant stirring and cooling with ice to solution of potassium hypobromite [prepared from KOH (6.7 g, 120 mmole) and Br_2 (1.2 cm³, 24 mmole)]. Stirring was continued for 1 h at room temperature. The precipitate was recrystallized from ethanol.

Acidification of an aqueous solution of the potassium salt IV gave the oxazolopyridine II, identical with a sample prepared previously [4].

3-Amino-4-trifluoromethyl-6-phenyl-2(1H)-pyridone (V, $C_{12}H_9F_3N_2O$). The reaction was carried out as in the previous example except, after stirring for 1 h at room temperature, the reaction mixture was heated for 1 h at 80-90°C. The anhydrous potassium salt IV (1.57 g, 22.3%) precipitated on cooling. The precipitate was filtered off and hydrochloric acid was added to bring the pH of the filtrate to 7. The light yellow precipitate of the amine V was recrystallized from ethanol.

7-Trifluoromethyl-5-phenyl-6-chloro-2-oxo-(1H)-oxazolo[5,4-b]pyridine (VIa, $C_{13}H_6ClF_3N_2O_2$). Solutions of oxazolopyridine II (1 g, 3.6 mmole) in DMF (15 cm³) and Cl_2 (0.4 g, 5.4 mmole) in DMF (5 cm³) were mixed and kept for 24 h at room temperature. The mixture was then added to water and the precipitate recrystallized from ethanol.

6-Bromo-7-trifluoromethyl-5-phenyl-6-chloro-2-oxo-(1H)-oxazolo[5,4-b]pyridine (VIb, $C_{13}H_6BrF_3N_2O_2$). Br₂ (0.14 cm³, 2.7 mmole) was added to a stirred solution of oxazole (II) (0.5 g, 1.8 mmole) in DMF (5 cm³) and the mixture was heated at 60°C for 5 h. The mixture was cooled, diluted with water and the precipitate was recrystallized from ethanol.

4-Trifluoromethyl-6-phenyl-3-ethoxycarbonylamino-2-(1H)-pyridone (VII, $C_{15}H_{12}F_3N_2O_3$). A solution of oxazole II (0.5 g, 1.8 mmole) in ethanol (2.5 cm³) and DMF (2.5 cm³) was boiled for 2 h and then cooled. The residue was recrystallized from 80% ethanol.

Com. pound	Molecular formula	M.p., °C	¹ H NMR spectrum, [•] δ, ppm	IR spectrum, cm ⁻¹	Yield, %
pound			o; ppm		ļ
IV Hydrate	C13H6F3KN2O2 • 2H2O	> 255 (dec.)	3,33 (H ₂ O), 7,137,60 (4H, m, Ph, CH), 7,91 (2H, m, Ph)	3434, 1722, 1650, 1625, 1594	65,2
IV	C13H6F3KN2O2	> 255 (dec.)	7,227,56 (4H, m, Ph, 6-H), 7,138,00 (2H, m, Ph)	1768, 1626, 1594	
v	C12H9F3N2O	198200 (dec.)	5.98 (2H, s, NH ₂), 6,42 (1H, s, 5-H), 7,40 (3H, m, Ph), 7,62 (2H, m, Ph), 12,02 (1H, NH)	3499, 3395, 1646, 1632, 1594	69,2
Vla	C13H6CIF3N2O2	204206	7,35 (5H, m, Ph), 12,44 (1H, NH)	32003060, 1798, 1634	64,3
VIb	C13H6BrF3N2O2	187190	7,55 (5H, m, Ph), 9,31 (1H, NH)	32103135, 1800, 1628	65,6
VII	C15H12F3N2O3	208210	1,19 (3H, t, CH ₃), 4,05 (2H, 9, CH ₂), 6,68 (1H, s, 5-H), 7,49 (3H, m, Ph), 7,82 (2H, m, Ph), 8,64 (1H, s, NH), 12,42 (1H, NH)	3235, 2999, 1706, 1672, 1634	69,0
VIIIa	C14H9F3N2O2	154155	3,53 (3H, CH ₃), 7,40 (3H, m, Ph), 7,71 (1H, s, 6-H), 7,89 (2H, m, Ph)	1788, 1634, 1616	85,7
үшь	C15H11F3N2O2	104106	1,40 (3H, t, CH3), 4,06 (2H, q, CH ₂), 7,48 (3H, m, Ph), 7,77 (1H, s, 6-H), 7,97 (2H, m, Ph)	1814, 1634, 1614	74.4
VIIIc	C16H13F3N2O2	116118	1,02 (3H, t, CH ₃), 1,80 (2H, m, CH ₂), 3,91 (2H, t, CH ₂), 7,44 (3H, m,Ph), 7,75 (1H, s, 6-H), 7,93 (2H, m, Ph)	1800, 1634, 1616	80,0
VIIId	C17H15F3N2O2	9597	0,97 (3H, t, CH ₃), 1,112,00 (4H, m, (CH ₂) ₂), 3,93 (2H, t, CH ₂), 7,46 (3H, m, Ph), 7,75 (1H, s, 6-H), 7,93 (2H, m, Ph)	1786, 1630, 1616	72,3
VIIIe	C18H17F3N2O2	9294	0,93 (3H, t, CH ₃), 1,112,00 (6H, m, (CH ₂) ₃), 3,94 (2H, t, CH ₂), 7,46 (3H, m, Ph), 7,77 (1H, s, 6-H), 7,95 (2H, m, Ph)	1782, 1632, 1614	69,4
VIIIf	C18H17F3N2O2	108110	0,97 (6H, d, 2CH ₃), 1,65 (3H, m, CH ₂ , CH), 3,93 (2H, m, CH ₂), 7,44 (3H, m, Ph), 7,75 (1H, s, 6-H), 7,93 (2H, m, Ph)	1784, 1628, 1614	69,4
VIIIg	C ₁₆ H ₁₁ F ₃ N ₂ O ₂	126128	4,62 (2H, d, CH ₂), 4,935,44 (2H, m, CH ₂), 5,696,20 (1H, m, CH), 7,49 (3H, m, Ph), 7,77 (1H, s, 6-H), 8,00 (2H, m, Ph)	1794, 1670, 1654, 1630, 1610	80,0
VIIIh	C20H13F3N2O2	137139	5.24 (2H, s, CH ₂), 7,24 (5H, m, Ph), 7,44 (3H, m, Ph), 7,75 (1H, s, 6-H), 7,97 (2H, m, Ph)	1790, 1632, 1612	57,7
VIIIi	$C_{16}H_{11}F_3N_2O_2$	140142	3,76 (3H, s, CH ₃), 4,71 (2H, s, CH ₂), 7,40 (3H, m, Ph), 7,70 (1H, s, 6-H), 7,91 (2H, m, Ph)	1786, 1760, 1634, 1622	77,6

TABLE 1. Properties of Compounds IV to VIIIa-i

*Spectra of compounds IVa, V, VIa and VII were obtained with DMSO-D₆ solutions, IVb in CD₃OD, and VIIIa-i in CDCl₃.

General Method for the Preparation of N-Substituted 7-Trifluoromethyl-5-phenyl-2-oxooxazolo[5,4-b]pyridines (VIII a-i). The requisite organic halide (3.1 mmole) was added dropwise with stirring to a solution of the hydrated potassium salt IV (0.5 g, 1.41 mmole) in DMF (10 cm^3) and the mixture was heated on a water bath for 1 h. The mixture was cooled, poured into water and hydrochloric acid added to adjust the pH to 6-7. Compound VIII a was crystallized from 80% dioxane, VIIIb-i from 80% ethanol.

1-Allyl-7-trifluoromethyl-5-phenyl-2-oxo-oxazolo[5,4-b]pyridine (VIIIg, $C_{16}H_{11}F_3N_2O_2$) was also prepared from a solution of the hydrated potassium salt IV (0.3 g, 0.84 mmole) in ethanol (10 cm³) and a solution of allyl bromide (0.16 cm³, 1.9 mmole) in ethanol (5 cm³). The mixture was heated on a water bath for 1 h. Yield 0.2 g (74.1 %). The product did not depress the melting point of with a sample of VIIIg prepared in DMF by the general method. 1-Methyl- (VIIIa) and 1-Isopentyl-7-trifluoromethyl-5-phenyl-2-oxooxazolo[5,4-b]pyridine (VIIIf) were prepared analogously from the anhydrous potassium salt (IV) in dry DMF in yields of 92.8 and 78.8% respectively. The yield of compound VIIIa from absolute ethanol solution was 71.4%.

REFERENCES

- 1. A. Binz, C. Rath and E. Mibkhat. Annalen, 475, 139 (1929).
- 2. Ch. Flouzat, M. Blanchet, and G. Guillamet, Tetrahedr. Lett., 33, 4571 (1992).
- 3. M. C. Viaud, P. Jamoneau, Ch. Flouzat, J.-G.Bizot-Espiard, B. Pfeiffer, P. Renard, D. H. Caignard, G. Adam, and G. Guillaumet, J. Med. Chem., 38, 1278 (1995).
- 4. É. Gudrinietse, M. Yure, P. Pastors, A. Karkliniya, and É. Palitis, Khim. Geterotsikl. Soedin., No. 2, 271 (1995).
- 5. W. H. Daly and D. Poche, Tetrahedr. Lett., 29, 5859 (1988).
- 6. K. Rufenacht, H. Kristinsson, and G. Mattern, Helv. Chim. Acta, 59, 1593 (1976).