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Protonation of the reactive intermediates produced in the reaction between sodium arylsulfinates and two
equiv. of dialkyl acetylenedicarboxylates in DMF, by H2O lead to substituted (1E,3E)-1-(arylsulfonyl)-
1,3-butadiene-1,2,3,4-tetracarboxylates in moderate yields. A regioselective method for the synthesis of
alkyl (E)-3-(arylsulfonyl)-2-propenoates is described. These reactions provide a useful synthetic route to
highly functionalized 1,3-butadienes and 2-propenoates.
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1. Introduction

Carbon–carbon double bands are among the most versatile functional groups in organic chemistry.
Many reactions have been established for the synthesis of C=C bonds (1–4). Among them, prepa-
ration of polysubstituted conjugated dienes is an important transformation, because such dienes
are useful intermediates and important structural constituents in the synthesis of natural products
and optical materials (5–8). The introduction of heterosubstituents has a significant influence on
the reactivity, regioselectivity, and stereochemistry of the diene and also adds versatility in further
reactions of the cycloadducts (9–14). Consequently, these dienes are becoming well established
as useful intermediates in the organic synthesis. In the past several decades, much effort has been
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devoted to introduce the sulfone functionality into organic molecules because of the interesting
effects of functionality on their structure stability, reactivity, and biological activity of resulting
compounds (15–18). Therefore, unsaturated sulfones have emerged as effective synthetic targets
in the recent years (19).

2. Results and discussion

As a part of our ongoing project on the development of new methods for the synthesis of substituted
(1E,3E)-1-(arylsulfonyl)-1,3-butadiene-1,2,3,4-tetracarboxylates via multicomponent reactions,
we have focused on the utility of arylsulfinate salts (20, 21). When sodium arylsulfinate was treated
with two equiv. of dialkyl acetylenedicarboxylate in DMF at ambient temperature, functionalized
1,3-butadiene was produced in good yields (Scheme 1).
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Scheme 1. Synthesis of substituted 1,3-butadienes from sodium arylsulfinates and dialkyl
acetylenedicarboxylates.

The 1H and 13C NMR spectra of ylides 3a–3d are consistent with the presence of one isomer.
The mass spectra of the products displayed molecular ion peaks at appropriatem/zvalues. The 1H
NMR spectra of compound 3a exhibited five single sharp lines readily recognized as arising from
methyl (δ 2.40 ppm) and methoxy (δ 3.45, 3.72, 3.84, and 3.93 ppm) groups, supporting the IR
absorption at 1733 cm−1. A singlet (δ 6.90 ppm) is observed for the olefinic H-atom, and the
4-methylphenyl moiety gave rise to characteristic signals in the aromatic region of the spectrum.
The 1H-decoupled 13C NMR spectrum of 3a showed four carbomethoxy groups at δ 162.0,
162.2, 163.4, and 163.7 ppm. The structure of 3a was unambiguously confirmed by an X-ray
crystallographic analysis, which disclose the 1E,3E-form of the generated C=C double bonds
as two conformers (Figure 1). The S-cis conformation incorporates a van der Waals repulsion
between the (4-methylphenyl)sulfonyl on C-1 and methylcarboxylate on C-4.

The nucleophilic reactions of sodium arylsulfinates 1 with alkyl propiolates 4 at room tem-
perature gave substituted alkyl (E)-3-(arylsulfonyl)-2-propiolates 5a–5d, stereoselectively, in
moderate yields. The results are listed in Scheme 2 and no Z-isomers of product 5 were detected.
The 1H NMR (400 MHz) spectrum of 5a displayed a triplet at δ 1.31 and quartet 4.25 charac-
teristic of ethoxy groups, while the olefinic protons were observed as two separate doublets at
δ 6.85 and δ 7.34 (3J = 15.2 Hz). The values of the coupling constants for the ethylenic protons
indicated that the 2-propenoates 5 existed exclusively in the E-configuration.
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Figure 1. X-ray crystal structure of compound 3a.
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Scheme 2. Synthesis of substituted 2-propenoates from sodium arylsulfinates and alkyl
propiolates.

Mechanistically, it is conceivable that the reaction between 1 and 2 involves the initial formation
of intermediate 6, which undergoes further reaction with a second molecule of 2 to produce 7.
Protonation of this carbanion by H2O leads to product 3 (Scheme 3).

In summary, we have demonstrated a highly efficient and stereselective synthesis for a series
of substituted 1,3-butadienes and 2-propenoates, which are potential candidates for cycloaddition
reactions. Further investigations aimed at defining the scope and limitations of the reaction are in
progress.
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Scheme 3. Proposed mechanism pathway.

3. Experimental

Compounds 1 and dialkyl actylenedicarboxylate were obtained commercially and used without
further purification. M.p.: Electrothermal-9100 apparatus. IR spectra: Shimadzu-IR-460 spec-
trometer; in cm−1. 1H- and 13C-NMR spectra: Bruker DRX-400 Avance instrument at 400.1
and 100.6 MHz, respectively; δ in ppm and J in Hz. MS: Finnigan-MAT-8430EI-MS mass
spectrometer; at 70 eV; in m/z (rel%). Elemental analyses: Vario EL III CHNOS elemental
analyzer.

3.1. General procedure for the preparation of substituted (1E,3E)-1-(arylsulfonyl)-1,
3-butadiene-1,2,3,4-tetracarboxylates 3

A solution of sodium arylsulfinate (1 mmol) in DMF (5 mL) was cooled to −5◦C. Then, dialkyl
acetylenedicarboxylate (2 mmol) in DMF (2 mL) was added dropwise, and the mixture was stirred
for 24 h at room temperature. The mixture was poured onto H2O (15 mL), extracted with AcOEt
(30 mL), dried (MgSO4), and the solvent was removed under reduced pressure. The residue was
purified by a silica gel column chromatography using hexane/AcOEt (5:1) as an eluent to give
1,3-butadienes 3a–3d.

3.2. General procedure for the preparation of substituted alkyl (E)-3-(arylsulfonyl)-
2-propenoate 5

A solution of sodium arylsulfinate (1 mmol) in DMF (3 mL) was cooled to −5◦C. Then, dialkyl
acetylenedicarboxylate (1 mmol) in DMF (2 mL) was added dropwise, and the mixture was stirred
for 24 h at room temperature. The mixture was poured onto H2O (15 mL), extracted with AcOEt
(30 mL), dried (MgSO4), and the solvent was removed under reduced pressure. The residue was
purified by a silica gel column chromatography using hexane/AcOEt (7:1) as an eluent to give
1,3-butadienes 5a–5d.

3.2.1. Tetramethyl (1E,3E)-1-[(4-methylphenyl)sulfonyl]-1,3-butadiene-1,2,3,
4-tetracarboxylate (3a)

Colorless solid; m.p. 150◦C; yield: 0.38 g (88%). IR (KBr) (νmax, cm−1): 2985, 1733, 1446, 1341,
1251, 1138, 1019, 723. Anal. Calcd for C19H20O10S (440.41): C, 51.82; H, 4.58; S, 7.28. Found:
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C, 51.02; H, 4.44; N, 7.59%. MS: m/z (%) = 440 (3, M+), 409 (10), 381 (25), 285 (100), 257
(53), 139 (82), 91 (55), 77 (32). 1H NMR (400.1 MHz, CDCl3): δ 2.40 (3H, s, Me); 3.45 (3H, s,
MeO); 3.72 (3H, s, MeO); 3.84 (3H, s, MeO); 3.93 (3H, s, MeO); 6.90 (1H, s, CH); 7.30 (2H,
d, 3J = 8.1 Hz, 2 CH); 7.41 (2H, d, 3J = 8.1 Hz, 2 CH) ppm. 13C NMR (100.6 MHz, CDCl3):
δ 21.5 (Me); 52.4 (MeO); 53.5 (MeO); 53.8 (MeO); 53.9 (MeO); 128.8 (2 CH); 129.4 (2 CH);
130.4 (CH); 136.2 (C); 136.8 (C); 138.1 (C); 143.9 (C); 145.7 (C); 162.0 (C=O); 162.2 (C=O);
163.4 (C=O); 163.7 (C=O) ppm.

3.2.2. Tetraethyl (1E,3E)-1-[(4-methylphenyl)sulfonyl]-1,3-butadiene-1,2,3,
4-tetracarboxylate (3b)

Yellow oil; yield: 0.42 g (85%). IR (KBr) (νmax, cm−1): 2984, 1730, 1603, 1457, 1372, 1264, 1153,
1029, 809, 709. Anal. Calcd for C23H28O10S (496.52): C, 55.64; H, 5.68; S, 6.46%. Found: C,
56.10; H, 5.87; S, 6.38%. MS: m/z (%) = 496 (1, M+), 341 (100), 313 (95), 267 (65), 239 (45),
155 (63), 139 (74), 91 (95), 77 (25). 1H NMR (400.1 MHz, CDCl3): δ 1.07 (3H, t, 3J = 7.2 Hz,
Me); 1.18 (3H, t, 3J = 7.2 Hz, Me); 1.28–1.35 (6H, m, 2 Me); 2.42 (3H, s, Me); 3.84 (2H, q,
3J = 7.2 Hz, CH2O); 4.18 (2H, q, 3J = 7.2 Hz, CH2O); 4.28–4.46 (4H, m, 2 CH2O); 6.90 (1H,
s, CH); 7.28 (2H, d, 3J = 8.2 Hz, 2 CH); 7.40 (2H, d, 3J = 8.2 Hz, 2 CH) ppm. 13C NMR
(100.6 MHz, CDCl3): δ 13.6 (Me); 13.7 (Me); 13.9 (Me); 14.0 (Me); 21.6 (Me); 61.4 (CH2O);
62.3 (CH2O); 62.6 (CH2O); 62.7 (CH2O); 128.9 (2 CH); 129.7 (2 CH); 130.5 (CH); 136.2 (C);
136.9 (C); 138.1 (C); 143.8 (C); 145.6 (C); 162.0 (C=O); 162.2 (C=O); 163.5 (C=O); 163.6
(C=O) ppm.

3.2.3. Tetramethyl (1E,3E)-1-(phenylsulfonyl)-1,3-butadiene-1,2,3,4-tetracarboxylate (3c)

Colorless solid; m.p. 103–105◦C; yield: 0.38 g (90%). IR (KBr) (νmax, cm−1): 2980, 1737, 1443,
1328, 1257, 1157, 1021, 727. Anal. Calcd for C18H18O10S (426.39): C, 50.70; H, 4.25; S, 7.52.
Found: C, 51.14; H, 4.54; S, 7.64%. MS: m/z(%) = 426 (2, M+), 395 (7), 367 (35), 285 (100),
257 (45), 125 (70), 109 (20), 77 (85), 59 (36). 1H NMR (400.1 MHz, CDCl3): δ 3.46 (3H, s,
MeO); 3.73 (3H, s, MeO); 3.85 (3H, s, MeO); 3.93 (3H, s, MeO); 6.92 (1H, s, CH); 7.52 (2H, t,
3J = 7.6 Hz, 2 CH); 7.64 (1H, t, 3J = 7.2 Hz, CH); 7.89 (2H, d, 3J = 8.0 Hz, 2 CH) ppm. 13C
NMR (100.6 MHz, CDCl3): δ 52.2 (MeO); 53.3 (MeO); 53.5 (MeO); 53.6 (MeO); 128.9 (2 CH);
129.0 (2 CH); 130.3 (CH); 134.3 (CH); 137.2 (C); 138.0 (C); 139.1 (C); 143.9 (C); 162.4 (C=O);
162.5 (C=O); 163.8 (C=O); 164.0 (C=O) ppm.

3.2.4. Tetraethyl (1E,3E)-1-(phenylsulfonyl)-1,3-butadiene-1,2,3,4-tetracarboxylate (3d)

Yellow oil; yield: 0.24 g (81%). IR (KBr) (νmax, cm−1): 2980, 1725, 1609, 1438, 1368, 1269,
1149, 1033, 825. Anal. Calcd for C22H26O10S (482.49): C, 54.77; H, 5.43; S, 6.64%. Found: C,
55.12; H, 5.14; S, 6.39%. MS: m/z(%) = 482 (5, M+), 341 (100), 313 (85), 253 (70), 239 (36),
141 (58), 125 (18), 77 (25). 1H NMR (400.1 MHz, CDCl3): δ 1.09 (3H, t, 3J = 7.1 Hz, Me); 1.20
(3H, t, 3J = 7.1 Hz, Me); 1.31–1.39 (6H, m, 2 Me); 3.84 (2H, q, 3J = 7.1 Hz, CH2O); 4.18 (2H,
q, 3J = 7.1 Hz, CH2O); 4.30 (2H, q, 3J = 7.1 Hz, CH2O); 4.37 (2H, q, 3J = 7.1 Hz, CH2O);
6.92 (1H, s, CH); 7.49 (2H, t, 3J = 7.4 Hz, 2 CH); 7.65 (1H, t, 3J = 7.3 Hz, CH); 8.05 (1H, d,
3J = 7.8 Hz, CH) ppm. 13C NMR (100.6 MHz, CDCl3): δ 13.6 (Me), 13.7 (Me); 13.9 (Me); 14.0
(Me); 61.5 (CH2O); 62.2 (CH2O); 62.5 (CH2O); 62.7 (CH2O); 128.7 (2 CH); 129.0 (2 CH); 130.3
(CH); 134.3 (CH); 137.5 (C); 138.0 (C); 139.2 (C); 143.5 (C); 161.9 (C=O); 162.1 (C=O); 163.5
(C=O); 163.6 (C=O) ppm.
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3.2.5. Ethyl (E)-3-(phenylsulfonyl)-2-propenoate (5a)

Colorless oil; yield: 0.17 g (72%). IR (KBr) (νmax, cm−1): 2971, 1706, 1425, 1317, 1221, 1142, 908,
627.Anal. Calcd for C11H12O4S (240.27): C, 54.99; H, 5.03; S, 13.34. Found: C, 54.68; H, 5.14; S,
13.53%. MS: m/z(%) = 240 (3, M+), 195 (40), 141 (76), 77 (100). 1H NMR (400.1 MHz, CDCl3):
δ 1.31 (3H, t,3J = 7.6 Hz, Me); 4.25 (2H, q, 3J = 7.6 Hz, CH2O); 6.85 (1H, d, 3J = 15.2 Hz,
CH); 7.34 (1H, d, 3J = 15.2 Hz, CH); 7.60 (2H, t, 3J = 7.2 Hz, 2 CH); 7.70 (1H, t, 3J = 7.2 Hz,
CH); 7.93 (2H, d, 3J = 7.6 Hz, 2 CH) ppm. 13C NMR (100.6 MHz, CDCl3): δ 14.0 (Me); 62.0
(CH2O); 128.3 (2 CH); 129.6 (2 CH); 131.0 (CH); 134.4 (CH); 138.4 (C); 143.1 (CH); 163.4
(C=O) ppm.

3.2.6. Methyl (E)-3-(phenylsulfonyl)-2-propenoate (5b)

Colorless oil; yield: 0.15 g (68%). IR (KBr) (νmax, cm−1): 2915, 1712, 1403, 1321, 1239, 1162,
825. Anal. Calcd for C10H10O4S (226.24): C, 53.09; H, 4.45; S, 14.17. Found: C, 53.28; H, 4.58;
S, 14.33%. MS: m/z (%) = 226 (5, M+), 195 (35), 141 (80), 77 (100). 1H NMR (400.1 MHz,
CDCl3): δ 3.85 (3H, s, MeO); 6.84 (1H, d, 3J = 15.1 Hz, CH); 7.37 (1H, d, 3J = 15.1 Hz, CH);
7.60 (2H, t, 3J = 7.2 Hz, 2 CH); 7.68 (1H, t, 3J = 7.2 Hz, CH); 7.92 (2H, d, 3J = 7.5 Hz, 2 CH)
ppm. 13C NMR (100.6 MHz, CDCl3): δ 52.7 (MeO); 128.3 (2 CH); 129.5 (2 CH); 131.0 (CH);
134.3 (CH); 138.5 (C); 143.1 (CH); 163.2 (C=O) ppm.

3.2.7. Methyl (E)-3-[(4-methylphenyl)sulfonyl]-2-propenoate (5c)

Colorless oil; yield: 0.16 g (70%). IR (KBr) (νmax, cm−1): 2912, 1710, 1429, 1309, 1218, 1136,
795. Anal. Calcd for C11H12O4S (240.27): C, 54.99; H, 5.03; S, 13.34. Found: C, 54.67; H, 5.14;
S, 13.52%. MS: m/z (%) = 240 (4, M+), 209 (73), 155 (85), 141 (82), 91 (90), 77 (100). 1H NMR
(400.1 MHz, CDCl3): δ 2.48 (3H, s, Me); 3.81 (3H, s, MeO); 6.82 (1H, d, 3J = 15.1 Hz, CH);
7.30 (1H, d, 3J = 15.1 Hz, CH); 7.40 (2H, d, 3J = 8.0 Hz, 2 CH); 7.82 (2H, d, 3J = 8.0 Hz, 2
CH) ppm. 13C NMR (100.6 MHz, CDCl3): δ 21.7 (Me); 52.8 (MeO); 128.4 (2 CH); 129.9 (CH);
130.3 (2 CH); 135.3 (C); 143.7 (CH); 145.7 (C); 164.0 (C=O) ppm.

3.2.8. Ethyl (E)-3-[(4-methylphenyl)sulfonyl]-2-propenoate (5d)

Colorless oil; yield: 0.16 g (65%). IR (KBr) (νmax, cm−1): 2925, 1711, 1462, 1321, 1218, 1172,
826. Anal. Calcd for C12H14O4S (254.29): C, 56.68; H, 5.55; S, 12.61. Found: C, 56.39; H, 5.44;
S, 12.53%. MS: m/z (%) = 254 (5, M+), 240 (30), 209 (66), 155 (70), 141 (85), 91 (100), 77
(80). 1H NMR (400.1 MHz, CDCl3): δ 1.29 (3H, t, 3J = 7.6 Hz, Me); 2.46 (3H, s, Me); 4.25
(2H, q, 3J = 7.6 Hz, CH2O); 6.80 (1H, d, 3J = 15.1 Hz, CH); 7.32 (1H, d, 3J = 15.1 Hz, CH);
7.36 (2H, d, 3J = 8.0 Hz, 2 CH); 7.82 (2H, d, 3J = 8.0 Hz, 2 CH) ppm. 13C NMR (100.6 MHz,
CDCl3): δ 14.2 (Me); 21.6 (Me); 62.3 (CH2O); 128.4 (2 CH); 129.8 (CH); 130.2 (2 CH); 135.4
(C); 143.7 (CH); 145.9 (C); 164.1 (C=O) ppm.

CCDC 892482 contains the supplementary crystallographic data for this paper. These data can
be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif.
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