Tetrahedron Letters 54 (2013) 3627-3629

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A general, enantioselective synthesis of β - and γ -fluoroamines

Matthew C. O'Reilly^a, Craig W. Lindsley^{a,b,*}

^a Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA ^b Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, TN 37232, USA

ARTICLE INFO

Article history: Received 16 April 2013 Revised 24 April 2013 Accepted 26 April 2013 Available online 9 May 2013

Keywords: β -fluoroamine γ -fluoroamine Enantioselective Organocatalysis

ABSTRACT

In this Letter, we describe a short, high yielding protocol for the enantioselective (87–96% ee) and general synthesis of β -fluoroamines and previously difficult to access γ -fluoroamines from commercial aldehydes via organocatalysis.

© 2013 Elsevier Ltd. All rights reserved.

Tetrahedror

Small molecule probes and drug candidates that contain one or more chiral fluorine atoms are commonplace and represent a critical component of the medicinal chemists' toolbox.^{1,2} In the context of amine-containing ligands, introduction of a fluorine atom either β - or γ - to the amine often maintains activity at the desired target while providing a 1–2 log reduction in p K_a . That shift in electronic structure often results in diminished ancillary pharmacology at cardiac ion channels, improved metabolic stability, enhanced pharmacokinetics, and increased CNS penetration.^{1–3} In some cases, introduction of a chiral β -fluoroamine, due to the almost 2-log impact on p K_a , can diminish activity at the desired target; however, moving the fluorine atom to the γ -position has been shown to maintain the desired bioactivity, while still affording the benefits of the β -fluoroamine congeners.^{1–6}

While we and others have made considerable advances in the synthesis of chiral β -fluoroamines,⁷⁻¹³ the synthesis of γ -congeners still relies on classical DAST approaches which are plagued with rearranged and dehydrated products.^{1-6,14} Therefore, new synthetic strategies to access these elusive, chiral γ -fluoroamines were warranted.

Previous work from our lab (Fig. 1) employed a one-pot protocol to access chiral β -fluoroamines via organocatalysis in high yield and % ee (Eq. 1); however, the configurational instability of the incipient α -fluoroaldehyde required its immediate conversion to the β -fluoroamine.^{7.8} Later efforts utilized a similar strategy, but employed the analogous α -chloroaldehydes, to access chiral *N*-terminal aziridines¹⁵ and chiral morpholines and piperazines;¹⁶

however, the configurational instability of the α -chloroaldehyde also necessitated immediate, one-pot use. To provide additional flexibility, we developed an approach (Fig. 1, Eq. 2) that improved yields and % ee for the synthesis of chiral morpholines and piperazines by reducing the α -chloroaldehyde to an alcohol, converting the hydroxyl to a leaving group, displacing the leaving group with an amino alcohol or diamine followed by base-induced cyclization.^{16,17}

These results led us to reflect on the β - and γ -fluoroamine problem, and apply this strategy to their asymmetric construction (Fig. 2). Here, we envisioned standard organocatalytic α -fluorination followed by reduction to the β -fluoroalcohol to provide a

Chiral β-Fluoroamines via Organocatalysis

Chiral Morpholines and Piperazines via Organocatalysis

Figure 1. First generation organocatalytic approach to chiral β -fluoroamines and refined approach to chiral morpholines and piperazines.

^{*} Corresponding author. Tel.: +1 615 322 8700; fax: +1 615 345 6532. E-mail address: craig.lindsley@vanderbilt.edu (C.W. Lindsley).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.04.116

Figure 2. Envisioned route to access both chiral $\beta\text{-}$ and $\gamma\text{-fluoroamines}$ via organocatalysis.

Scheme 1. Organocatalytic, enantioselective synthesis of β-fluoroalcohols 4a-g.

bench stable, chiral intermediate. Conversion of the hydroxyl to a leaving group followed by S_N2 displacement with an amine would provide chiral β -fluoroamines **2**, whereas a cyanide displacement, followed by nitrile reduction, would afford rapid access to chiral γ -fluoroamines **3**.

To validate this new approach, we prepared a number of β -fluoroalcohol substrates **4a–g** under standard conditions in good yields (65–77%) and high enantioselectivity (87–96% ee) as expected from literature precedent (Scheme 1).^{7,8,18–20} Conversion to the corresponding triflate, and displacement with benzylamine delivered the desired chiral β -fluoroamines **2a–c** (Scheme 2) in high yields (84–96%) and in excellent enantioselectivity (90–94% ee). In essence, this new strategy sets the key stereocenter in a conformationally stabile way, affording the β -fluoroamines with reproducibly high % ee, and higher yields than the first generation chiral β -fluoroamine route.⁷

In some instances, a β , β -difluoroamines have been shown to be an important pharmacophore,^{1–7} and we wanted to determine if this new approach would grant access to this moiety as well. Here (Scheme 3), organocatalytic α -fluorination with excess NFSI leads to α , α -difluorination, and reduction affords the β , β -difluoroalcohol. Conversion to the triflate and displacement with benzylamine provides the desired β , β -difluoroamine **5** from the difluoroalcohol in 81% yield, representing another improvement over our first generation methodology.⁷

While the ability to access β -fluoroamines was gratifying, our main objective with this approach was to gain access to chiral γ -fluoroamines, a chemotype that is very challenging to prepare in high enantioselectivity.^{1–8,14} We began our attempts with a racemic **4a** congener and surveyed a variety of leaving groups for cyanide displacement en route to γ -fluoroamines. Interestingly, when tosylate **6** was employed, all attempts (independent of cyanide source, stoichiometry, solvent, and temperature) afforded a 1,2-bis-cyano adduct **7** (Scheme 4). As more forcing conditions were required for tosylate displacement, a competing displacement of the fluoride by cyanide occurred. When triflate **8** was used, excess KCN in refluxing DCM provided the desired β -fluoronitrile **9**, but in

^ayield following chromatography on a 1 mmol scale ^b% ee determined by chiral HPLC analysis ^c% ee determined of the free alcohol

Scheme 2. Synthesis of chiral β-fluoroamines 2a-c.

Scheme 3. Synthesis of a β,β-difluoroamine 5.

Scheme 4. Optimization of β-fluoronitrile **8** synthesis.

only 50% conversion accompanied by considerable decomposition. Further surveying of reaction conditions and refinement led to the discovery of optimal conditions (10 equiv KCN in the presence of 20 mol % 18-crown-6 at room temperature in MeCN for 16 h) to fully convert triflate **8** to the desired fluoronitrile **9**, without any evidence of cyanide displacement of the fluoride.

With racemic **9** in hand, we then evaluated a number of reducing agents to provide the γ -fluoroamine. Interestingly, the vast majority of common methods for nitrile reduction (LiAlH₄, DIBALH, H₂/Pd, Ni(0)/NaBH₄) failed to reduce the β -fluoronitrile without considerable decomposition or defluorination. Ultimately, good results were obtained with the milder conditions of InCl₃/NaBH₄,^{21,22} delivering the γ -fluoroamines in yields up to 90%.

Having developed a route to racemic γ -fluoroamines, attention was now directed at accessing chiral γ -fluoroamines, an elusive and difficult to prepare pharmacophore. Here, the chiral β-fluoroalcohols 4a-g (Scheme 1) were converted into the corresponding triflates, which were then displaced under the optimized cyanide displacement conditions to deliver chiral β -fluoronitriles **9a**-g in yields ranging from 71% to 93% (Table 1). Our optimized reduction protocol with InCl₃/NaBH₄ smoothly provided the chiral γ-fluoroamines 3a-g in excellent yields (73–90%) and enantioselectivity (87-96% ee). The overall yields starting from commercial aldehydes **1** range from 40–58%. Of particular utility of this approach is the commercial availability of both enantiomers of the organocatalyst, enabling either enantiomer of the chiral γ -fluoroamine to be prepared. We were now able to access chiral β-fluoro- and γ -fluoroamines, as well as β , β -difluoroamines, providing a range of finely tuned amine basicity (with pK_{as} of 10.7 (parent amine)

Table 1		
Chrial γ -fluoroamines	10a-g via	organocatalysis

R1 H H H H H H H H H H H H H H H H H H H	dride, Lutidine °C, 30 min → H-crown-6 hitrile, rt 6 h 9:	$\frac{1 \text{ InCl}_3, \text{ NaBH}_4}{\text{THF, rt}} \stackrel{\text{R}_1}{}$	NH ₂ 3a-g
Starting material	Yield of 9a-g ^a	Yield of 3a-g ^b	% ee ^c
4a	9a , 71%	3a , 87%	94%
4b	9b , 92%	3b , 84%	87%
4c	9c , 73%	3c , 86%	92%
4d	9d , 93%	3d, 83%	96%
4e	9e , 77%	3e , 90%	96%
4f	9f , 82%	3f , 89%	95%
4g	9g , 84%	3g , 73%	96%

^a All reactions were performed on a 1.0 mmol scale.

^b All reactions were performed on a 0.5 mmol scale.

^C Enantiomeric excess determined by ¹⁹F NMR using the (R)-Mosher amide of the final amine.

Scheme 5. Synthesis of a β-fluoro tetrazole and a β-fluoro amide oxime.

to 9.0 (β -fluoro), to 7.3 (β , β -difluoro) to 9.7 (γ -fluoro)). Attempts to prepare a γ , γ -difluoro congener, to provide an amine substrate with a p K_a of ~8.7 failed, as we were unable to displace the β , β difluorotriflate with cyanide in yield greater than 10%, despite surveying a broad spectrum of reaction conditions (cyanide source, temperature, solvent, additives).²³

By synthesizing β -fluoronitriles, we envisioned them not only as precursors to γ -fluoroamines, but also as intermediates poised to access a variety of fluorinated scaffolds using the nitrile as a handle. To illustrate this idea, we performed common reactions to exemplify the β -fluoronitrile as a lynchpin providing access to other, difficult to prepare, fluorinated moieties. As seen in Scheme 5, the β -fluoronitrile **10** was used in a [3+2] cycloaddition with sodium azide to provide β -fluorotetrazole **11**, a common carboxylic acid bioisostere.²⁴ Additionally, hydrolysis of the nitrile with hydroxyl-amine provided amide oxime **12**, a precursor for oxadiazole synthesis.²⁵ Overall, the chiral β -fluoronitrile linchpin offers rapid entry to a wide range of valuable fluorinated functional groups with subtle perturbations of p K_a and electronic properties.

In summary, we have developed a powerful extension of our one-pot, chiral β -fluoroamine work, that overcomes issues related to variable % ee due to configurationally unstable α -fluoroaldehydes, by a two-pot protocol that affords β -fluoroamines in high yields and reproducibly high enantioselectivity (90–94% ee). A further extension allows access to highly elusive and previously difficult to prepare chiral γ -fluoroamines using a three-pot protocol in good overall yields (40–58%) and excellent enantioselectivities (87–96%) from commercial aldehydes. Importantly, outside of

classical DAST chemistry, this work represents the only other approach for the enantioselective synthesis of γ -fluoroamines, an important pharmacophore in drug discovery and development. Moreover, the chiral β -fluoronitrile linchpin offers rapid access to a wide range of valuable fluorinated functional groups with subtle perturbations of p K_a and electronic properties. Additional refinements are under development and will be reported in due course.

Acknowledgments

The authors gratefully acknowledge funding from the Department of Pharmacology, Vanderbilt University Medical Center and the Warren Family & Foundation for funding the William K. Warren, Jr. Chair in Medicine.

Supplementary data

Supplementary data (experimental details and characterization data for all new compounds) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.04.116.

References and notes

- 1. Hagmann, W. K. J. Med. Chem. 2008, 51, 4359-4369.
- 2. Purser, S.; Morre, P. R.; Swallow, S.; Gouverance, V. Chem. Soc. Rev. 2008, 37, 320–330.
- 3. O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308-319.
- Rowley, M.; Hallett, D. J.; Goodacre, S.; Moyes, C.; Crawforth, J.; Sparey, T. J.; Patel, S.; Marwood, R.; Patel, S.; Thomas, S.; Hitzel, L.; O'Connor, D.; Szeto, N.; Castro, J. L.; Hutson, P. H.; Macleod, A. M. J. Med. Chem. 2001, 44, 1603–1612.
- Yang, Ž.-Q.; Barrow, J. C.; Shipe, W. D.; Schlegel, K. S.; Shu, Y.; Yang, F. V.; Lindsley, C. W.; Rittle, K. E.; Bock, M. G.; Hartman, G. D.; Uebele, V. N.; Nuss, C. E.; Fox, S. V.; Kraus, R. L.; Doran, S. M.; Connolly, T. M.; Tang, C.; Ballard, J. E.; Kuo, Y.; Adarayan, E. D.; Prueksaritanont, Y.; Zrada, M. M.; Marino, M. J.; DiLella, A. G.; Reynolds, I. J.; Vargas, H. M.; Bunting, P. B.; Woltman, M. M.; Koblan, K. S.; Renger, J. J. J. Med. Chem. 2008, 51, 6471–6477.
- Shipe, W. D.; Barrow, J. C.; Yang, Z.-Q.; Lindsley, C. W.; Yang, F. V.; Schlegel, K. S.; Shu, Y.; Rittle, K. E.; Zrada, M. M.; Bock, M. G.; Hartman, G. D.; Tang, C.; Ballard, J. E.; Kuo, Y.; Adarayan, E. D.; Prueksaritanont, Y.; Uebele, V. N.; Nuss, C. E.; Connolly, T. M.; Doran, S. M.; Fox, S. V.; Kraus, R. L.; Marino, M. J.; Graufelds, V. K.; Vargas, H. M.; Bunting, P. B.; Hasbun-Manning, M.; Evans, R. M.; Koblan, K. S.; Renger, J. J. J. Med. Chem. 2008, 51, 3692–3695.
- 7. Fadeyi, O. O.; Lindsley, C. W.; Org, C. W. Lett. 2009, 11, 943-946.
- 8. Schulte, M. L.; Lindsley, C. W.; Org, C. W. Lett. 2011, 13, 5684-5687.
- Creswell, A. J.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Tyte, M. J. Org. Lett. 2010, 12, 2936–2939.
- 10. Duggan, P. J.; Johnston, M.; March, T. L. J. Org. Chem. 2010, 75, 7365-7372.
- 11. Appayee, C.; Brenner-Moyer, S. E. Org. Lett. 2010, 12, 3356-3359.
- 12. Malamakal, R. M.; Hess, W. R.; Davis, T. A. Org. Lett. 2010, 12, 2186-2189.
- 13. Kalow, J. A.; Schmitt, D. E.; Doyle, A. G. J. Org. Chem. 2012, 77, 4177-4183.
- 14. Percy, J. M. Sci. Synth. 2005, 34, 379-416.
- 15. Fadeyi, O. O.; Schulte, M. L.; Lindsley, C. W. Org. Lett. 2010, 12, 3276-3278.
- 16. O'Reilly, M. C.; Lindsley, C. W. Tetrahedron Lett. **2012**, 53, 1539–1542.
- 17. O'Reilly, M. C.; Lindsley, C. W. Org. Lett. **2012**, *14*, 2910–2913.
- Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826–8828.
- Halland, N.; Braunton, A.; Bachmann, S.; Margio, M.; Jorgensen, K. A. J. Am.
- *Chem. Soc.* **2004**, *126*, 4790–4791. 20. Margio, M.; Bachmann, S.; Halland, N.; Braunton, A.; Jorgensen, K. A. *Angew.*
- Chem., Int. Ed. 2004, 43, 5507–5511. 21. Saavedra, J. Z.; Resendez, A.; Rovira, A.; Eagon, S.; Haddenham, D.; Singaram, B.
- *J.* Org. Chem. **2012**, 77, 221–228. 22. de Souza, M. V. N.; Vasconcelos, T. R. A. Appl. Organomet. Chem. **2006**, 20, 798–
- 810.
 23. See supporting information for listing of attempted conditions for synthesizing B.B-difluoronitriles.
- 24. Koguro, K.; Oga, T.; Mitsui, S.; Orito, R. Synthesis 1998, 6, 910-914.
- Copp, R. R.; Abraham, B. D.; Farnham, J. G.; Twose, T. M. Org. Process Res. Dev. 2011, 15, 1344–1347.