
Bioorganic & Medicinal Chemistry Letters 14 (2004) 2829–2833
Stability studies of C-40,60 acetal benzylmaltosides synthesized as
inhibitors of smooth muscle cell proliferation
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Abstract—In our investigations to synthesize inhibitors of smooth muscle cell (SMC) proliferation, compound 6a displayed sub-
micromolar activity in in vitro antiproliferative assays and reduced intimal thickening using a rat balloon angioplasty model via iv
administration. In order to identify analogs that could be administered orally, the chemical instability of the C-40,60 acetal of
compound 6a was addressed. Several novel variants with increased acid stability and comparable in vitro activity were prepared.
� 2004 Elsevier Ltd. All rights reserved.
Restenosis, a complication of vascular wounding, is
often caused by injuries from surgical procedures such
as PTCA (balloon angioplasty).1 Roughly 30–50% of
the patients receiving PTCA undergo a re-narrowing of
the affected vascular segment within 6 months of surgery
and may require additional surgical intervention.2 Vas-
cular restenosis occurs when appropriate healing
mechanisms become over productive and generate more
than the required permanent tissue, resulting in an
inadvertent re-thickening of the vascular wall. One
approach3 to controlling this problem is to selectively
inhibit the growth and migration of smooth muscle cells
(SMC) without affecting those of endothelial cells (EC).
Table 1. SAR of C-40, 60, acetal derivatives

Compound First step for 5a–h: see below for reagents.

Second step for 6a–h: acylation with BzCl

Yield

acyla

6a Benzaldehyde dimethyl acetal, TsOHÆH2O 78/80

6b Ph-acetaldehyde dimethyl acetal, CSA 35/63

6c Acetaldehyde dimethyl acetal, TsOHÆH2O 62/54

6d Isobutyraldehyde diethyl acetal, CSA 45/49

6e Propionaldehyde diethyl acetal, TsOHÆH2O 57/47

6f 4-Cl-benzaldehyde dimethyl acetal, CSA 51/50

6g 4-NO2-benzaldehyde dimethyl acetal, CSA 42/35

6h 4-Pyridinecarboxaldehyde, DMF, H2SO4, 110 �C 20/46

aConcentration inducing 50% inhibition of smooth muscle cell proliferation
bConcentration inducing 50% inhibition of endothelial cell proliferation.
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In the course of synthesizing a series of disaccharides
that exhibit selective SMC antiproliferative activity, a
tetrahydroxy carbohydrate lead (6a) was generated that
possessed submicromolar inhibitory activity (0.020 lM,
Table 1) in vitro with no apparent cytotoxicity.4 Com-
pound 6a displayed 30-fold selectivity over EC prolif-
eration through a mechanism, which may result from
blocking production of lactosylceramide (LacCer).
LacCer is a ceramide linked disaccharide that is thought
to be linked to both proliferation and intercellular
adhesion molecule expression by acting as a precursor
signal to an obligatory superoxide production.5 Thus, by
either preventing the production of LacCer, or by
, % (acetal and

tion steps)

R4 (see Scheme 1 for

core structure)
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[IC50 (lM)]
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[IC50 (lM)]

Ph 0.020 0.923

Bn 0.035 ––

CH3 0.103 0.257
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Et 0.037 0.235
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inhibiting LacCer’s ability to bind to its downstream
target, an inhibitory analog should have a profound
effect on both proliferative and pro-inflammatory pro-
cesses. To date, no other nonsulfated disaccharide has
been linked to cellular events in such a manner. There-
fore, the link between the proliferative pathway in SMC
and the structural similarity of our disaccharides to
LacCer, although speculative, could be one explanation
to the inhibitory activity of these analogs and is con-
sistent with our ongoing studies.6 Future work in this
area should help to further elucidate this mechanism.

When tested in vivo at doses of 100mg/kg/h iv, com-
pound 6a also caused a statistically significant reduction
of intimal thickening, ranging from 18–39%.7 Although
compound 6a showed promising in vivo activity, the
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Table 2. Stability studies of C-40,60 acetal derivatives

Compound R4 (see

Scheme 1

for core

structure)

pH

1 1.4 1.9 2.5 3

t1=2 (

6a Ph 1.9 2.3 4.2 13 >

6b Bn >20 >20 >20 >20 >

6c CH3 >20 >20 >20 >20 >

6d Isopropyl >20 >20 >20 >20 >

6e Et >20 >20 >20 >20 >

6f 4-Cl-Ph 1.7 4 13.3 >20 >

6h 4-Pyridinyl >20 >20 >20 >20 >
chemical instability of the C-40,60 acetal precluded its
advancement as a lead. This functionality was identified
to be a potential source of acid induced degradation
when 6a was dosed orally. Under conditions that mimic
the stomach (pH1), compound 6a showed substantial
degradation to 7 (Scheme 1 and Table 2). The antipro-
liferative activity of 7 was significantly reduced com-
pared to parent (34.9 vs 0.020 lM). Therefore, we
focused our attention on the synthesis of a library of
acetals with the view of improving stability while
maintaining SMC inhibitory activity.

Aromatic and aliphatic C-40,60 acetals of 6a were syn-
thesized according to the chemistry illustrated in Scheme
1 (6b–h and Table 1). Hepta-O-acetyl-a-maltosyl bro-
mide was coupled with 3-nitro-4-chloro-benzyl alcohol
in the presence of mercuric bromide and mercuric cya-
nide to yield glycoside 1. Reduction of the nitro group of
1 with stannous chloride afforded the anilino compound
2. Acylation of the amine with acetyl chloride in the
presence of Et3N afforded intermediate 3, which was
converted to the heptahydroxy compound 4 by reaction
with catalytic sodium methoxide in methanol. In most
cases, the substituted C-40,60 acetal (5a–g) was formed by
use of a substituted aldehyde dimethyl or diethyl acetal
and a catalytic acid source (TsOHÆH2O or CSA).
Selective acylation of the 6-position primary alcohol
using benzoyl chloride in a 1:1 mixture of tetrahydro-
furan and 2,4,6-collidine afforded compounds 6a–g.8;9

To prepare compound 6h, intermediate 4 was condensed
with 4-pyridinecarboxaldehyde using concentrated
H2SO4 followed by similar acylation conditions with
2,4,6-collidine.

The chemical stability of each acetal (6b–h) was evalu-
ated using 6a as a benchmark. Replacing the phenyl
group of compound 6a with a heterocycle (6h) or an
aliphatic acetal (6b–e) generated more stable analogs
without loss of in vitro activity (Tables 1 and 2). Analog
6f had only a modest improvement in stability over 6a in
the pH range 1.4–2.5. Acid stability of compound 6g
could not be determined due to its precipitation under
conditions of the assay. When the benzylidene at the
40,60-position was replaced with a methyl acetal (6c), the
compound exhibited 5-fold less potency (0.103 vs
0.020 lM for 6a) suggesting the need for a substituent
larger than Me to retain biological activity. However, 6c
had slightly improved chemical stability compared to 6a
(32% vs 100% degradation over 18 h period at pH 1).
% Remaining

at 18–20 h

(pH1)

pH with

�90% at
18–20 h

3.5 4 4.5

h)

20 >20 >20 >20 0 3.5

20 >20 >20 >20 94 1

20 >20 >20 >20 68 1.4–1.9

20 >20 >20 >20 53 2

20 >20 >20 >20 52 1.9–2.5

20 >20 >20 >20 0 3

20 >20 >20 >20 97 1



S. C. Mayer et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2829–2833 2831
When compound 6c was tested in vivo (iv) in the intimal
thickening assay, no activity was observed. Incorporat-
ing a nicotinoyl group into the acetal functionality re-
sulted in a compound possessing excellent acid stability
without loss of in vitro activity (6h, 0.003 lM). Over the
18 h period at pH1, only 3% degradation to compound
7 was detected.

In conclusion, analogs of disaccharide 6a with improved
chemical stability have been prepared. Specifically, by
modifying the C-40,60 benzylidene acetal with aromatic
and aliphatic variants provided more stable compounds
while maintaining SMC antiproliferative activity.
Incorporating a nicotinoyl acetal in this position afford-
ed an analog (6h) with excellent acid stability and good
in vitro activity (0.003 lM). Addressing this chemical
stability issue has provided a series of stable acetal
derivatives available for future in vivo studies.
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39.3mmol) in freshly distilled CH3CN (239mL) was added
in one portion Hg(CN)2 (9.02 g, 35.7mmol). After 0.5 h,
hepta-O-acetyl-a-maltosyl bromide (25.0 g, 35.7mmol) was
added, and the mixture stirred for 18 h at rt. The reaction
was then quenched with a mixture of H2O/brine (1:1,
100mL) and extracted with 10% CH2Cl2/EtOAc. The
combined organic extracts were dried (MgSO4) and con-
centrated. Purification by flash chromatography (10:90–
80:20, EtOAc/petroleum ether gradient) gave 51.9 g (90%)
of the title compound as a glassy oil, which was recrystal-
lized from Et2O/petroleum ether to afford a glassy white
solid, mp 107–111 �C; 1H NMR (CDCl3) d 2.00 (s, 3H),
2.02 (s, 3H), 2.03, (s, 3H), 2.04 (s, 6H), 2.11 (s, 3H), 2.15 (s,
3H), 3.70 (ddd, J ¼ 2:9, 4.2, 9.7Hz, 1H), 3.94–3.98 (m, 1H),
4.01–4.07 (m, 2H), 4.20–4.28 (m, 2H), 4.54 (dd, J ¼ 2:9,
12.3Hz, 1H), 4.63–4.68 (m, 2H), 4.84–4.94 (m, 3H), 5.06 (t,
J ¼ 10:1Hz, 1H), 5.26 (t, J ¼ 9:2Hz, 1H), 5.36 (dd,
J ¼ 9:7, 10.3Hz, 1H), 5.42 (d, J ¼ 4:2Hz, 1H), 7.43 (dd,
J ¼ 2:2, 8.3Hz, 1H), 7.53 (d, J ¼ 8:3Hz, 1H), 7.83 (d,
J ¼ 2:0Hz, 1H); IR (KBr) 3450, 2950, 1755, 1550, 1375,
1230, and 1050 cm�1; mass spectrum [(+) ESI], m=z 823/825
(M+NH4

þ), 828/830 (M+Na)þ; Anal. Calcd for
C33H40ClNO20: C, 49.17; H, 5.00; N, 1.74. Found: C,
49.16; H, 4.88; N, 1.71.
Step 2: 3-Amino-4-chlorobenzyl hepta-O-acetyl-b-maltoside
(2). A solution containing 4-chloro-3-nitrobenzyl hepta-O-
acetyl-b-maltoside (19.3 g, 23.9mmol) and tin(II) chloride
dihydrate (37.7 g, 167mmol) in EtOAc (479mL) was
refluxed for 2 h. The reaction was cooled to rt, carefully
quenched with satd aq NaHCO3 (until basic), diluted with
EtOAc (250mL), stirred for 0.5 h, and filtered. The biphasic
filtrate was separated and the aqueous phase extracted with
EtOAc. The combined organic extracts were dried
(Na2SO4) and concentrated. Purification by flash chroma-
tography (0–12% acetone/CHCl3 gradient) gave 17.8 g
(96%) the title compound as a glassy solid, mp 78–79 �C;
1H NMR (CDCl3) d 2.00 (s, 9H), 2.026 (s, 3H), 2.032 (s,
3H), 2.11 (s, 3H), 2.16 (s, 3H), 3.00–5.00 (br s, 2H), 3.64–
3.68 (m, 1H), 3.97 (ddd, J ¼ 2:4, 4.2, 10.1Hz, 1H), 4.02–
4.07 (m, 2H), 4.24 (dd, J ¼ 2:2, 3.7Hz, 1H), 4.27 (dd,
J ¼ 2:6, 4.0Hz, 1H), 4.50–4.57 (m, 3H), 4.74 (d,
J ¼ 12:1Hz, 1H), 4.83–4.90 (m, 2H), 5.05 (t, J ¼ 10:1Hz,
1H), 5.22 (t, J ¼ 9:2Hz, 1H), 5.35 (dd, J ¼ 9:7, 10.5Hz,
1H), 5.42 (d, J ¼ 4:0Hz, 1H), 6.62 (dd, J ¼ 2:0, 8.1Hz,
1H), 6.76 (d, J ¼ 2:0Hz, 1H), 7.21 (d, J ¼ 8:1, 1H); IR
(KBr) 3450, 3350, 2950, 1755, 1650, 1425, 1375, 1230, and
1050 cm�1; mass spectrum [(+) ESI], m=z 776/778 (M+H)þ,
798/800 (M+Na)þ; Anal. Calcd for C33H42ClNO18: C,
51.07; H, 5.45; N, 1.80. Found: C, 50.94; H, 5.52; N, 1.60.
Step 3: 3-Acetamido-4-chlorobenzyl hepta-O-acetyl-b-malto-
side (3). To a stirred solution of 3-amino-4-chlorobenzyl
hepta-O-acetyl-b-maltoside (20.6 g, 26.5mmol) and trieth-
ylamine (8.13mL, 58.3mmol) in THF (265mL) at 0 �C was
added dropwise acetyl chloride (2.26mL, 31.8mmol). After
0.5 h at this temperature, it was warmed to rt, and stirred an
additional 6 h. At this point, the reaction was concentrated
and taken up in EtOAc (700mL). This organic solution was
washed with 1N HCl (70mL), satd aq NaHCO3 (70mL),
and brine (70mL) and then dried (MgSO4). After concen-
tration, the residue was purified by flash chromatography
(20:80–100:0, EtOAc/petroleum ether gradient) to afford
the product (16.2 g, 75%) as a glassy solid, mp 84–86 �C; 1H
NMR (CDCl3) d 2.00 (s, 6H), 2.020 (s, 3H), 2.027 (s, 3H),
2.03 (s, 3H), 2.11 (s, 3H), 2.16 (s, 3H), 2.24 (s, 3H), 3.66–
3.69 (m, 1H), 3.94–3.98 (m, 1H), 4.00–4.06 (m, 2H), 4.22–
4.28 (m, 2H), 4.50–4.61 (m, 3H), 4.80–4.91 (m, 3H), 5.05 (t,
J ¼ 10:1Hz, 1H), 5.22 (t, J ¼ 9:2Hz, 1H), 5.35 (dd,
J ¼ 9:4, 10.5Hz, 1H), 5.41 (d, J ¼ 4:0Hz, 1H), 6.99 (dd,
J ¼ 2:0, 8.1Hz, 1H), 7.34 (d, J ¼ 8:1Hz, 1H), 7.62 (s, 1H),
8.32 (s, 1H); IR (KBr) 3400, 2950, 1750, 1690, 1600, 1540,
1425, 1375, 1230, and 1050 cm�1; mass spectrum [(+) ESI],
m=z 818/820 (M+H)þ, 840 (M+Na)þ; Anal. Calcd for
C35H44ClNO19: C, 51.38; H, 5.42; N, 1.71. Found: C, 51.03;
H, 5.36; N, 1.59.
Step 4: 3-Acetamido-4-chlorobenzyl-b-maltoside (4). A solu-
tion containing 3-acetamido-4-chlorobenzyl hepta-O-ace-
tyl-b-maltoside (0.945 g, 1.12mmol) and 25wt% NaOMe in
MeOH (19.2 lL, 0.336mmol) in MeOH (27.6mL) was
refluxed for 2.5 h. The reaction was cooled to room
temperature and concentrated, and the resulting residue
was triturated with Et2O to afford the product (0.583 g,
99%) as a foam; 1H NMR (DMSO-d6) d 2.07 (s, 3H), 3.03–
3.16 (m, 2H), 3.19–3.49 (m, 7H), 3.55–3.62 (m, 2H), 3.67–
3.73 (m, 1H), 4.28 (d, J ¼ 7:7Hz, 1H), 4.33–5.76 (br s, 7H),
4.67 (ABq, J ¼ 12:5Hz, Dd ¼ 0:22, 2H), 5.01 (d,
J ¼ 3:7Hz, 1H), 7.21 (dd, J ¼ 1:8, 8.1Hz, 1H), 7.44 (d,
J ¼ 8:1Hz, 1H), 7.64 (d, J ¼ 1:5Hz, 1H), 9.33–9.69 (br s,
1H); IR (KBr) 3400, 2900, 1680, 1600, 1540, 1430, 1375,
1310, 1150, and 1035 cm�1, mass spectrum [(+) ESI], m=z
524/526 (M+H)þ, 546 (M+Na)þ; Anal. Calcd for
C21H30ClNO12Æ1.0 MeOH: C, 47.53; H, 6.16; N, 2.52.
Found: C, 47.94; H, 6.34; N, 2.42.
Step 5: 3-Acetamido-4-chlorobenzyl 40,60-O-benzylidene-b-
maltoside (5). To a stirred solution of 3-acetamido-4-
chlorobenzyl b-maltoside (14.15 g, 27.0mmol) in DMF
(325mL) at rt was added benzaldehyde dimethyl acetal
(8.11mL, 54.0mmol) dropwise followed by TsOHÆH2O
(2.57 g, 13.5mmol). The reaction mixture was heated to
60 �C for 6 h and then quenched with K2CO3 (1.87 g,
13.5mmol) with an additional 0.5 h heating at this temper-
ature. At this point, the solution was filtered hot, and the
solvent was distilled off using the high vac. The residue was
purified by flash chromatography (80:2:1–20:2:1, EtOAc/
EtOH/H2O gradient) to afford the product (10.8 g, 65%) as
a white solid, mp 143–147 �C; 1H NMR (DMSO-d6) d 2.08
(s, 3H), 3.07–3.12 (m, 1H), 3.28–3.50 (m, 5H), 3.51–3.60 (m,
2H), 3.64–3.75 (m, 3H), 4.10–4.12 (m, 1H), 4.30 (d,
J ¼ 7:9Hz, 1H), 4.67 (t, J ¼ 5:9Hz, 1H), 4.68 (ABq,
J ¼ 12:5Hz, Dd ¼ 0:22, 2H), 5.14 (d, J ¼ 4:0Hz, 1H),
5.25 (d, J ¼ 5:1Hz, 1H), 5.30 (d, J ¼ 5:3Hz, 1H), 5.51 (d,
J ¼ 3:3Hz, 1H), 5.57 (s, 1H), 5.63 (d, J ¼ 6:8Hz, 1H), 7.22
(dd, J ¼ 1:5, 8.3Hz, 1H), 7.35–7.38 (m, 3H), 7.42–7.46 (m,
3H), 7.66 (s, 1H), 9.53 (s, 1H); IR (KBr) 3500, 3410, 2910,
2850, 1700, 1600, 1550, 1440, 1425, 1375, 1310, 1230, 1150,
1070, and 1030 cm�1; mass spectrum [(+) FAB], m=z 634
(M+Na)þ; Anal. Calcd for C28H34ClNO12Æ1.0 H2O: C,
53.38; H, 5.76; N. 2.22, Found: C, 53.58; H, 5.62; N, 2.25.
Step 6: 3-Acetamido-4-chlorobenzyl 6-O-benzoyl-40,60-O-
benzylidene-b-maltoside (6a). To a stirred solution of 3-
acetamido-4-chlorobenzyl 40,60-O-benzylidene-b-maltoside
(5.00 g, 8.17mmol) in THF (80mL) at �40 �C was added
collidine (80mL, 605mmol) dropwise followed by dropwise
addition of BzCl (1.14mL, 9.80mmol). After 2 h at this
temperature, it was warmed to rt and stirred an additional
48 h. At this point, the solvent was distilled off using the
high vac, and the residue was diluted with EtOAc (700mL).
This layer was washed with 1N HCl (70mL), satd
NaHCO3 (70mL), and brine (70mL) and then dried
(MgSO4). After concentration, the oily residue was purified
by flash chromatography (1–11%, MeOH/CHCl3 gradient)
and recrystallization (EtOAc/hexane) to afford the product
(4.04 g, 69%) as a white solid, mp 185–187 �C; 1H NMR
(DMSO-d6) d 2.05 (s, 3H), 3.16–3.22 (m, 1H), 3.32–3.42 (m,
2H), 3.48–3.64 (m, 4H), 3.71 (dd, J ¼ 4:8, 9.7Hz, 1H),
3.74–3.79 (m, 1H), 4.05 (dd, J ¼ 4:8, 10.3Hz, 1H), 4.35 (dd,
J ¼ 5:3, 12.3Hz, 1H), 4.39 (d, J ¼ 7:7Hz, 1H), 4.58–4.63
(m, 1H), 4.65 (ABq, J ¼ 12:5Hz, Dd ¼ 0:14, 2H), 5.14 (d,
4.0Hz, 1H), 5.34 (t, J ¼ 5:1Hz, 2H), 5.52 (s, 1H), 5.57 (d,
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J ¼ 3:1Hz, 1H), 5.79 (d, J ¼ 6:2Hz, 1H), 7.19 (dd, J ¼ 2:0,
8.3Hz, 1H), 7.32–7.38 (m, 3H), 7.38–7.45 (m, 3H), 7.51–
7.55 (m, 2H), 7.63–7.68 (m, 2H), 7.98–8.01 (m, 2H), 9.49 (s,
1H); IR (KBr) 3380, 3290, 2890, 2870, 1730, 1670, 1600,
1540, 1440, 1420, 1375, 1275, 1070, 1050, 1025, 975, and
710 cm�1; mass spectrum [(+) FAB], m=z 716/718 (M+H)þ,
738/740 (M+Na)þ; Anal. Calcd for C35H38ClNO13: C,
58.70; H, 5.35; N, 1.96. Found: C, 58.53; H, 5.36; N, 1.94.
Compounds 6b–h were prepared using similar procedures
to steps 5–6 of footnote 9 with the one exception that
intermediate 5h was prepared with 4-pyridinecarboxalde-
hyde using concentrated H2SO4 in DMF. All intermediates
(5b–h) and final compounds (6b–h) were verified by 1H
NMR, IR, MS, and CHN.
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