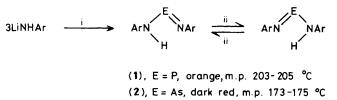
Published on 01 January 1986. Downloaded by University of Prince Edward Island on 25/10/2014 02:33:42.


Novel Arylimides of Phosphorus(III) and Arsenic(III) [the Arsazene being the First Stable Compound containing an As^{III}N Double Bond]; X-Ray Structures of E(=NAr)(NHAr) (E = P or As, Ar = C₆H₂Bu^t₃-2,4,6)[†]

Peter B. Hitchcock, Michael F. Lappert, Audesh K. Rai, and Hugh D. Williams

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Treatment of PCl₃ or AsCl₃ with 3Li(NHAr) (Ar = $C_6H_2But_3$ -2,4,6) affords the novel two-co-ordinate P^{III} or As^{III} imides E(=NAr)(NHAr) [E = P (1) or E = As (2)] which undergo slow prototropy in C_6D_6 ; for the isomorphous compounds (1) and (2), /(EN) and \angle NEN for (1) [in square brackets for (2)] are 1.573(8) and 1.633(8) Å [1.714(7) and 1.745(7) Å] and 103.8(5)° [98.8(3)°], respectively.

We have recently introduced the bulky ligand ^-NHAr (Ar = $C_6H_2Bu^{1}_3$ -2,4,6), and have described unusual amides of *inter alia* lithium^{1,2} and boron.³ We now report on an extension into the realm of P^{III} and As^{III} chemistry.

Scheme 1. Ar = $C_6H_2Bu_{13}^*-2,4,6$; E = P or As. Reagents and conditions: i, ECl₃, OEt₂, reflux, and subsequent isolation of crystalline (1) or (2); ii, C_6D_6 , 30 °C, ¹H n.m.r. spin-saturation-transfer experiments [these involved the selective irradiation of either o-Bu^t or p-Bu^t protons of (a) imido- and (b) amido-aryls and observing any changes in intensity of the non-irradiated signals]. Characterisation: C/H/N analyses, as well as i.r. and n.m.r. data, for each of (1) and (2); selected n.m.r. chemical shifts (C_6D_6 ; 30 °C): ¹H (1): δ 1.68 and 1.62 (o-Bu^t), 1.50 and 1.40 (p-Bu^t), and 4.6 [d, $J(^{31}P_{-1}H)$ 84 Hz, NH]; (2): 1.65 and 1.54 (o-Bu^t), 1.44 and 1.30 (p-Bu^t); ¹³C (1): δ 36.9, 36.7, 35.0, and 34.8 (CBu^t); (2): 36.85, 36.75, 35.0, and 34.7 (CBu^t); ³¹P{¹H} (rel. to H₃PO₄): (1), 268.4 p.p.m.; and X-ray data for (1) and (2) (Figure 1).

The features of interest are as follows. (a) We have obtained (Scheme 1, reaction i) the first disubstituted phosphazene P(=NAr)(NHAr) (1). (b) The isomorphous arsenic analogue As(=NAr)(NHAr) (2) is the first stable arsenic(III) compound containing an As=N double bond, and as a crystalline two-co-ordinate arsenic complex it has no forerunner. (c)

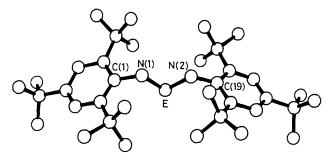
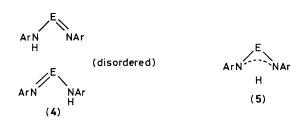



Figure 1. The molecular structures and atom numbering schemes for the phosphorus(III) and arsenic(III) arylimides E(=NAr)(NHAr)[Ar = C₆H₂Bu^t₃-2,4,6, and E = P (1) or As (2)]. Some relevant dimensions for compounds (1) and (2) [in square brackets] are as follows: E-N(1) 1.573(8) [1.714(7)], E-N(2) 1.633(8) [1.745(7)], N(1)-C(1) 1.475(11) [1.422(10)], N(2)-C(19) 1.413(10) [1.438(9)] Å; N(1)-E-N(2) 103.8(5) [98.8(3)], E-N(1)-C(1) 126.1(7) [123.2(6)], E-N(2)-C(19) 126.5(7) [124.6(5)]°.

[†] No reprints available.

Although single crystal X-ray analysis of the phospha- and arsa-azenes (1) and (2) failed to identify the site of protonation of the conjugate base $-E(NAr)_2$ (E = As or P), n.m.r. data (¹H and ¹³C) showed that the two aryl groups are magnetically distinct (up to at least 400 K). (d) The slow exchange process $E(=NAr)(NHAr) \rightleftharpoons E(NHAr)(=NAr)$ (ii in Scheme 1) for the compounds (1) and (2), has, however, now been demonstrated to occur (using spin-saturation-transfer nuclear Overhauser n.m.r. studies on each of the pair of *o*- and *p*-Bu¹ ¹H signals); these are unprecedented examples of prototropic tautomerism. (e) X-Ray data for compounds (1) and (2) reveal that the two E–N distances are unequal (although this is more pronounced for E = P than E = As) and the NEN angle decreases in the sequence P > As.

Phospha-azenes $P(=NR)(NR^1R^2)$ (3) were first obtained in 1973,⁴ and X-ray data for one such compound ($R = R^1 = Bu^t$, $R^2 = SiMe_3$) are available⁵ and are similar to those now found for compound (1) (Figure 1). Each of the substituents R, R¹, and R² in (3) has invariably, in the past, been bulky.⁶ Attempts to prepare As(=NR²)(NR²₂) by thermolysis of AsCl(NR²₂)₂ failed.⁷

As for (c), the X-ray data for (1) and (2) do not distinguish between the disordered structure (4) and a delocalised alternative (5).[‡] The As–N bond lengths in As^{III} amides have been in the range 1.79-1.88 Å.⁸

We thank the S.E.R.C. (studentship for H. D. W.) and the British Council and U.G.C. (India) for their support (for A. K. R.).

Received, 4th July 1986; Com. 920

References

- 1 B. Cetinkaya, P. B. Hitchcock, M. F. Lappert, M. C. Misra, and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1984, 148.
- 2 T. Fjeldberg, P. B. Hitchcock, M. F. Lappert, and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1984, 822.
- 3 P. B. Hitchcock, H. A. Jasim, M. F. Lappert, and H. D. Williams, J. Chem. Soc., Chem. Commun., 1984, 662.
- 4 E. Niecke and W. Flick, Angew. Chem., Int. Ed. Engl., 1973, 12, 585.
- 5 S. Pohl, Angew. Chem., Int. Ed. Engl., 1976, 15, 687.
- 6 O. J. Scherer and H. Conrad, Z. Naturforsch, Teil B, 1981, 36, 515; and refs. therein.
- 7 O. J. Scherer and H. Hontsch, Chem. Ber., 1979, 112, 1927.
- 8 Cf., M. F. Lappert, P. P. Power, A. R. Sanger, and R. C. Srivastava, 'Metal and Metalloid Amides,' Ellis Horwood, Chichester, 1980.

‡ Crystal data for (1) [(2) square brackets] $C_{36}H_{59}N_2P$ [$C_{36}H_{59}N_2As$], orthorhombic [orthorhombic], space group $P2_12_12_1$ [$P2_12_12_1$], a = 9.747(5) [9.661(7)], b = 15.787(9) [15.959(5)], c = 22.958(10)[23.101(8)] Å, U = 3533 [3562] Å³, Z = 4 [4], $D_c = 1.04$ [1.11] g cm⁻³, F(000) = 1216 (1288). The structures of the isomorphous compounds (1) and (2) were solved by direct methods and refined to R = 0.095[0.055], $R_w = 0.098$ [0.064], using 1213 [2463] reflections with $|F^2| > \sigma(F^2)$ measured on an Enraf–Nonius CAD-4 diffractometer with Mo- K_{α} radiation. Atomic co-ordinates, bord lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1, 1986.