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Abstract—In the presence of titanium tetrachloride, the borane/tetrahydrofuran complex can reduce 2-methyl-3-oxoamides into
the corresponding syn-aminols in good yields and high diastereoselectivity. The use of borane/dimethyl sulfide instead of
BH3/THF allows a partial reduction to syn-�-hydroxyamides. © 2001 Elsevier Science Ltd. All rights reserved.

The structural unit of 1,3-aminoalcohol is present with
a stereodefined geometry in many compounds having a
biological interest.1 In addition, aminols are useful
building blocks in the synthesis of many natural
products.2

In recent years several procedures for the construction
of this functionality, configurationally defined at the
1,3,3 2,34 and 1,2,35 positions, have been proposed.
Surprisingly, a simple, general, and efficient solution to
the problem of 1,2-stereocontrol is not available. In
particular, the only methods reported in the literature
for the synthesis of 1,2-syn-3-aminols are the regio- and
stereoselective ring-opening of epoxy-amines with
alanes6 and the acidic hydrolysis of certain 3,6-dihydro-
2H-1,3-oxazines.7 These procedures show good
stereoselectivity, but they are rather complex being
based on multistep reactions.

We assumed that the diastereoselective double reduc-
tion of �-ketoamides could be a very simple approach

to obtain syn-�-amino-�-alkylalcohols 2 (Scheme 1).
We report here how such a conversion can be accom-
plished according to a one-pot procedure by using an
excess of the BH3–THF complex in the presence of
TiCl4.8

It is well established that the reduction of carbonyl
bidentate compounds with BH3–complexes in the pres-
ence of TiCl4 proceeds via chelate complex intermedi-
ates.9 It can be reasonably assumed that amide 1 forms
a cyclic complex like 3, by treatment with TiCl4 in
dichloromethane–THF at low temperature (see Scheme
2). 1,2-Strain interaction between the methyl and R1

group favours conformation 3A. Addition of an excess
of the BH3–THF complex produces the stereoselective
reduction of the carbonyl function as the result of an
attack of the hydride ion source to the less hindered
face of 3A: very likely this would give a titanium or
boron alkoxy amide of type 4. In order to have a
complete reduction of 1 to 4 and in order to promote
the further reduction of the amide to the amino func-
tion, the mixture was allowed to reach room tempera-

Scheme 1.
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Scheme 2.

ture. Decomposition with diluted HCl gave aminoalco-
hols as cyclic boron complexes. Further treatment of
the crude with methanolic HCl at 60°C for 3 h allows
one to obtain syn-aminoalcohols 2 in a pure form. We
adopted this decomposition procedure since the usual
oxidative method (H2O2, NaOH, MeOH) fails, due to
the presence of a trivalent nitrogen in the substrate.10

The reaction has been applied to a significative series of
�-methyl-�-ketoamides. As shown in Table 1, yields are
generally good and diastereoisomeric ratios vary from
high to excellent.11,12 The reaction works well when R1

is a phenyl, a t-butyl group and a long chain alkyl
framework. Slightly lower selectivities were observed in
the following cases: (i) when the A1,2 strain is low
(R1=Et, Table 1, entry 1); (ii) when R1 is a i-Pr group
(Table 1, entry 2), owing to the occurrence of 1,5-pen-
tane interaction;13 (iii) when a strong electron with-
drawing group such as NO2 is present in the aromatic
ring bound to the carbonyl function (Table 1, entry 7).
In the latter case, in fact, the decrease in the electron
density at the carbonyl function causes a destabilization
of the chelate complex 3.

Other borane complexes were also tested. The BH3–
py14 complex works quite well, although the use of this
reagent leads to serious problems in the purification of
final compounds.

Surprisingly, the BH3–Me2S complex15 allows a very
rapid reduction of ketoamides 1 to syn-�-hydroxy-�-
alkylamides 5 (Scheme 3), however, it fails to accom-
plish the further reduction of the amide to the amine
function. As a consequence this reducing agent can be
conveniently employed when the target is the synthesis
of syn-�-hydroxy-�-alkylamides.16 A few examples of
this reduction are reported in Table 2.

The results reported here show how the reaction pro-
ceeds with high diastereoselectivity and in almost quan-
titative yields.17,18 It is interesting to note that such a
conversion cannot be accomplished with the BH3–THF
method by quenching the reaction at low temperature.
The reduction reaction of 1f for example was stopped
after 3 h at −78°C: a mixture containing the unreacted
starting material (10%), the monoreduction product
(hydroxy amide 5f, 63%), and the aminol derivative 2f
(11%) was recovered.

Due to the efficiency and the high diastereoselectivity
observed, the TiCl4–BH3–Me2S method represents a
very useful alternative to previously reported
procedures.19

In conclusion, a simple and highly diastereoselective
methodology for the synthesis of aminols with a 1,2-
syn-stereoconfiguration is proposed. The method makes

Table 1. Diastereoselective one-pot reduction of �-methyl-�-ketoamides 2 to the corresponding syn-aminoalcohols 2 with
BH3–THF in THF at −78°C to room temperature

Starting material R1 Product Yield (%) syn/antiEntry

1a Et1 2a 65 96/4
90/10i-Pr1b2 602b

3 �99/1892cC5H111c
1d t-Bu4 2d 83 98/2

5 1e c-C6H11 2e 72 95/5
6 871f �99/1Ph 2f

p-NO2-Ph 2g 62 90/107 1g
p-Br-Ph 2h 69 94/61h8

Scheme 3.
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Table 2. Diastereoselective reduction of �-methyl-�-ketoamides 1 to the corresponding syn-�-methyl-�-hydroxyamides 5 with
BH3–Me2S in CH2Cl2 at −78°C

R1 ProductEntry Yield (%)Starting material syn/anti

1a1 Et 5a �99 98/2
i-Pr 5b1b �992 95/5

1c3 C5H11 5c �99 �99/1
t-Bu4 5d1d �99 98/2
c-C6H11 5e1e �995 90/10

1f6 Ph 5f �99 �99/1
p-NO2-Ph 5g 87 91/97 1g
p-Br-Ph 5h �99 �99/11h8

use of starting materials that are easy available, such as
�-ketoamides20 and very common reducing and chelat-
ing agents, such as borane complexes and titanium
tetrachloride. Yields are generally very good and
diastereoselectivities are either high or excellent. More-
over, the reduction can be limited to the step where
�-hydroxyamides are produced by an appropriate
choice of the borane reducing agent.
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