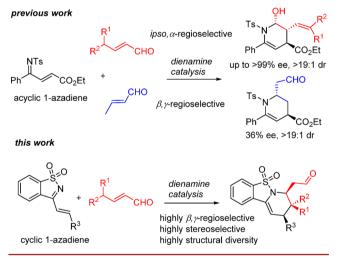

β_{γ} -Regioselective Inverse-Electron-Demand Aza-Diels-Alder Reactions with α,β -Unsaturated Aldehydes via Dienamine Catalysis

Jing Gu,[†] Chao Ma,[†] Qing-Zhu Li,[†] Wei Du,[†] and Ying-Chun Chen^{*,†,‡}

[†]Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [‡]College of Pharmacy, Third Military Medical University, Shapingba, Chongging 400038, China

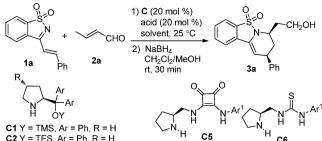
Supporting Information

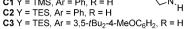

ABSTRACT: A stereoselective inverse-electron-demand aza-Diels-Alder cycloaddition process of cyclic 1-aza-1,3-butadienes and α_{β} -unsaturated aldehydes has been developed via dienamine catalysis. This reaction exhibits excellent β_{γ} regioselectivity for enal substrates with substantial structural diversity and broad functionalities, readily producing highly enantioenriched fused piperidine derivatives and enabling efficient sequential construction of complex polycyclic frameworks.

he [4 + 2] cycloaddition between an electron-poor diene and an electron-rich dienophile, namely, the inverseelectron-demand Diels-Alder reaction (IED DA), has been extensively explored since being disclosed.¹ This type of cycloaddition is extremely useful for the construction of O-, N-, and S-centered heterocycles, such as dihydropyrans and piperidines that are privileged frameworks in both organic and medicinal fields,² and a diversity of catalytic stereoselective processes have been exploited.³

The HOMO-raised enamine^{4,5} or dienamine^{6,7} species derived from an amine catalyst and aliphatic aldehydes or α_{β} -unsaturated aldehydes, respectively, have performed as good dienophiles or dienes in various DA reactions with electron-deficient partners. As far as dienamine intermediates are concerned, different regioselectivity was observed in aza-DA cycloadditions with acyclic N-Ts 1-azadienes, and the reactions commonly occurred at the proximal $ipso,\alpha$ -double bond. In contrast, only one example of remoter β , γ -regioselective aza-DA reaction with simple crotonaldehyde was obtained but with poor enantioselectivity (Scheme 1).7 Although the Jørgensen group developed highly β_{γ} -regioselective and stereoselective IED oxo-DA reactions of enals through H-bond-directing dienamine catalysis,8 the corresponding asymmetric azaversion, occurring at the distal C=C bond of dienamines with broader structural diversity, has not been well developed yet. Recently, we reported that cyclic 3-vinyl-1,2-benzoisothiazole-1,1-dioxides⁹ could regio- and chemoselectively act as either 4π -electron-participation dienes¹⁰ or unlettered 2π electron-participation dienophiles¹¹ with properly structured trienamine species, or even biselectrophilic C3 partners in formal [5 + 3] cycloadditions via cascade dienamine-dienamine catalysis,¹² we are encouraged to investigate their asymmetric IED aza-DA cycloadditions with $\alpha_{,\beta}$ -unsaturated aldehydes. Such cyclic 1-azadienes might be more applicable substrates favoring the distal β_{γ} -regioselectivity owing to the better rigid

Scheme 1. Dienamine Catalysis in Inverse-Electron-Demand Aza-Diels-Alder Reactions




structures in comparison with the previously applied acyclic 1azadienes.13

The initial study was performed with 3-styryl-1,2-benzoisothiazole-1,1-dioxide 1a and crotonaldehyde 2a, catalyzed by chiral secondary amine $\alpha_{,}\alpha$ -diphenylprolinol O-TMS ether C1 (20 mol %) and benzoic acid (BA, 20 mol %) in CHCl₃.¹⁴ To our delight, the cycloaddition proceeded smoothly with excellent β_{γ} -regioselectivity at room temperature, and the corresponding alcohol 3a was isolated in a high yield after sequential in situ reduction with NaBH₄. Pleasingly, the enantioselectivity was quite promising (Table 1, entry 1, 81% ee). Subsequently, a few solvents were screened, none of which

Received: June 23, 2014 Published: July 21, 2014

Table 1. Screening Studies of Aza-Diels-Alder Cycloaddition with 1a and Crotonaldehyde 2a^a

 $Ar^1 = 3,5-(CF_3)_2C_6H_3$ **C4** Y = TES, Ar = $3,5-tBu_2-4$ -MeOC₆H₂, R = OTBS

CG

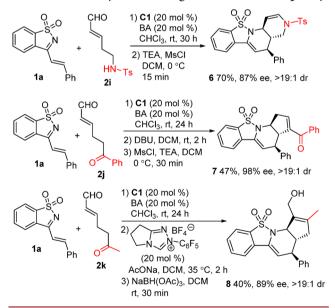
entry	С	acid	solvent	<i>t</i> (h)	yield ^{b} (%)	ee ^c (%)
1	C1	BA	CHCl ₃	12	81	81
2	C1	BA	CCl_4	18	78	82
3	Cl	BA	DCM	12	78	79
4	Cl	BA	DCE	12	82	71
5	C1	BA	toluene	24	78	61
6	Cl	BA	THF	24	78	59
7	C1	BA	MeCN	24	_	-
8	C2	BA	CHCl ₃	12	83	33
9	C3	BA	CHCl ₃	12	81	59
10	C4	BA	CHCl ₃	12	79	51
11	Cl	OFBA	CHCl ₃	12	79	39
12	Cl	AcOH	$CHCl_3$	12	80	65
13	Cl	SA	CHCl ₃	12	79	81
14^d	Cl	BA	CHCl ₃	18	79	84
15^e	Cl	BA	CHCl ₃	18	80	88
16 ^f	C5	BA	CHCl ₃	72	45	55
17	C6	BA	$CHCl_3$	72	_	-

^aUnless noted otherwise, reactions were performed with 1-azadiene 1a (0.05 mmol), crotonaldehyde 2a (0.075 mmol), amine C (0.01 mmol) and acid (0.01 mmol) in solvent (0.5 mL) at 25 °C. ^bIsolated yield for two steps. ^cDetermined by chiral HPLC analysis; dr > 19:1. ^dAt 0 °C. ^eAt -10 °C. ^fAdding DEA (diethylacetamide, 1 equiv).⁸

provided better results unfortunately (entries 2-5), while no reaction occurred in acetonitrile (entry 6). The attempts to improve the enantioselectivity by using more bulky amine catalysts¹⁵ C2-C4 were not successful, and significantly decreased ee values were observed (entries 8-10). Using ofluorobenzoic (OFBA) and acetic acid also resulted in much poorer enantiocontrol (entries 11 and 12), while the similar good enantioselectivity was obtained in the presence of salicylic acid (SA) (entry 13). Pleasingly, the reaction was carried out efficiently at lower temperature, and the enantioselectivity could be slightly improved without effect on the yield (entries 14 and 15). In contrast to what observed in IED oxo-DA cycloadditions with H-bond-directing aminocatalysis,⁸ poor reactivity and fair enantioselectivity was attained by using bifunctional catalyst C5 (entry 16). Even thiourea C6 exhibited no catalytic activity (entry 17).

With the optimal catalytic conditions in hand, we consequently investigated the substrate scope and limitations of 3-vinyl-1,2-benzoisothiazole-1,1-dioxides 1 and α_{β} -unsaturated aldehydes 2. The resulting aldehyde cycloadducts were directly reduced with NaBH4 to give the corresponding alcohols 3. The results are summarized in Table 2. At first, a variety of α_{β} -unsaturated aldehydes were explored in reactions with 1-azadiene 1a. In comparison with the results of crotonaldehyde 2a (Table 2, entry 1), excellent enantioselec-

Table 2. Substrate Scope and Limitations in Reactions of Electron-Deficient 1-Azadienes and $\alpha_{,\beta}$ -Unsaturated Aldehydes 2^{a}

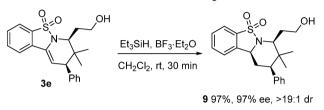

2b R ² 2c R ²		3 = Me 2f R ² = R ³ = 3 = Et 2g R ² = H,	2) NaBH ₄ CH ₂ Cl ₂ /l rt, 30 mir	nol %) R 5 °C → MeOH n B 3S	$\frac{1}{4} + \frac{1}{4} + \frac{1}$	
entry	2	R	\mathbb{R}^1	<i>t</i> (h)	yield ^b (%)	ee ^c (%)
1^{d}	2a	Ph	Н	18	3a , 80	88
$2^{d,e}$	2b	Ph	Н	18	3b , 81	94 ^f
3^d	2c	Ph	Н	18	3c , 81	81 ^g
4^{d}	2d	Ph	Н	12	3d , 80	76
5	2e	Ph	Н	36	3e , 75	96
6	2f	Ph	Н	12	3f , 70	96
7	2g	Ph	Н	24	3g , 78 ^h	87
8	2h	Ph	Н	48	3h , 60	90
9	2e	3-FC ₆ H ₄	Н	24	3i , 72	96
10	2e	$4\text{-}ClC_6H_4$	Н	24	3 j, 77	96 ⁱ
11	2e	$2\text{-}ClC_6H_4$	Н	48	3k, 70	95
12	2e	$4\text{-}BrC_6H_4$	Н	24	31 77	98
13	2e	$4\text{-}CF_3C_6H_4$	Н	24	3m , 70	96
14	2e	$3,4-Cl_2C_6H_3$	Н	24	3n , 75	97
15	2e	$3-MeC_6H_4$	Н	48	30 , 74	96
16	2e	$4-MeC_6H_4$	Н	36	3p , 78	96
17	2e	$4-MeOC_6H_4$	Н	36	3q , 74	94
18	2e	SU	Н	48	3r , 70	97
19	2e	2-thienyl	Н	48	3s , 62	98
20	2e	Ph	6-Br	24	3t, 74	99
21	2e	Ph	5,7-Me ₂	32	3u, 74	89
22	2a	ipropyl	Н	18	3v , 66	80
23	2a	chexyl	Н	18	3w , 60	82
24 ^j	2e	Ph	Н	24	5a , 73	84
25 ^j	2e	$4\text{-}CF_3C_6H_4$	Н	18	5b, 78	85
26 ^j	2e	$4-MeC_6H_4$	Н	18	5c , 79	90
27^{j}	2e	Ph	7-F	24	5d , 73	81

^aUnless noted otherwise, reactions were performed with 1-azadiene 1 (0.1 mmol), enal 2 (0.12 mmol), amine C1 (0.02 mmol) and benzoic acid (0.02 mmol) in CHCl₃ (1.0 mL) at 25 °C. ^bIsolated yield for two steps. ^cee was determined by chiral HPLC analysis; unless noted otherwise, dr > 19:1 by ¹H NMR analysis. ${}^{d}At - 10 \, {}^{\circ}C. \, {}^{e}C4$ was used. ${}^{f}dr (6:1)$ in DA step. ${}^{g}dr (7:1)$ in DA step. ${}^{h}The$ aldehyde product was obtained. 'The absolute configuration of 3j was determined by X-ray analysis after derivation. The other products were assigned by analogy. ¹1-Azadiene 4 was used.

tivity with moderate diastereoselectivity (6:1) could be obtained for linear 2-pentenal 2b in the presence of a bulky amine C4 (entry 2), while using amine C1 still produced better data for the reaction of 2-hexenal 2c (entry 3). A modest ee value with excellent diastereoselectivity was attained for 3phenylbut-2-enal 2d (entry 4). Importantly, γ , γ -disubstituted enals **2e** and **2f** also exhibited high $\beta_i \gamma$ -regioselectivity though a quaternary center must be generated, and remarkable stereoselectivity was gained even at room temperature (entries 5 and 6). In addition, α_{β} -unsaturated aldehydes 2g and 2h bearing functional groups could be well tolerated, providing the desired products in high stereoselectivity and with moderate vields (entries 7 and 8). On the other hand, an array of 1-azadienes 1 bearing diverse aryl and heteroaryl groups were explored in reactions with 4-methyl-2-pentenal 2e, and the corresponding products were efficiently furnished in moderate to high yields and with excellent stereoselectivity (entries 9-21). 1-Azadienes bearing branched alkyl groups were compatible in reactions with crotonaldehyde 2a catalyzed by amine C1, producing products 3t and 3u in modest data (entries 22 and 23). Furthermore, the analogous 1-azadienes 4 containing a 1,2,3benzoxathiazine-2,2-dioxide motif¹⁶ also were effectively applied in reactions with enal **2e** under the same aminocatalytic conditions, affording cycloadducts 5a-5d in good yields and stereocontrol (entries 24-27).

As the current β , γ -regioselective aza-DA reaction via dienamine catalysis could tolerate diverse functional group, we are inspired to utilize some functionalized α , β -unsaturated aldehydes, which might enable the sequential assembly with aldehyde group to construct complex polycyclic frameworks. As illustrated in Scheme 2, α , β -unsaturated aldehydes **2i** bearing a

Scheme 2. Employing Functionalized Enal Substrates to Construct Heterocycles with Higher Molecular Complexity



sulfonamide group¹⁷ smoothly reacted with 1-azadiene **1a** under the established catalytic conditions, and a fused polyhydro-1,6-naphthyridine derivative¹⁸ **6** was produced in a good yield and stereoselectivity after subsequent elimination process with methanesulfonyl chloride (MsCl) and triethylamine (TEA). In addition, enal **2j** having a benzoyl group¹⁹ also was successfully employed in the aza-DA reaction, and a

sequential intramolecular aldol and dehydration process was conducted to deliver a polyhydrocyclopenta[*b*]pyridine²⁰ 7 in a modest yield but with excellent stereoselectivity. Moreover, a different transformation strategy could be developed when substrate **2k** with an acetyl group was used. Interestingly, the attempt to conduct intramolecular benzoin condensation with aldehyde precursor under *N*-heterocyclic carbene catalysis was not successful, but furnished a tetracyclic product **8** after reducing the unexpected regioselective adol product with NaBH(OAc)₃²¹ albeit the overall yield is fair. Such drug-like materials might find application in medicinal chemistry.

As outlined in Scheme 3, the reduction of the enamide group of adducts 3e with Et₃SiH and BF₃·OEt₂ proceeded

Scheme 3. Reduction of Enamide Group

uneventfully,^{5a} and piperidine derivative **9** was efficiently obtained in a high yield and with exclusive diastereoselectivity.

In conclusion, we have investigated the asymmetric inverseelectron-demand aza-Diels–Alder cycloadditions of cyclic 1azadienes containing a 1,2-benzoisothiazole-1,1-dioxide or 1,2,3-benzoxathiazine-2,2-dioxide motif with α,β -unsaturated aldehydes. Excellent distal β,γ -regioselectivity and high stereoselectivity were obtained by employing dienamine catalysis of a chiral secondary amine. The substrate scope for both partners is substantial, and some sequential transformations could be effectively carried out with the multifunctional cycloadducts to furnish frameworks with higher degrees of structural complexity. Further studies would find more valuable applications, and the results will be reported in due course.

ASSOCIATED CONTENT Supporting Information

Complete experimental procedures and characterization of new products, CIF file of enantiopure derivative of **3***j*, NMR spectra and HPLC chromatograms. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ycchen@scu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the financial support from the NSFC (21122056, 21372160 and 21321061), 973 Program (2010CB833300), and Program for Changjiang Scholars and Innovative Research Team in University (IRT13031).

REFERENCES

(1) For reviews, see: (a) Boger, D. L. *Tetrahedron* 1983, 39, 2869.
(b) Boger, D. L. *Chem. Rev.* 1986, 86, 781. (c) Jørgensen, K. A. *Angew. Chem., Int. Ed.* 2000, 39, 3558. (d) Behforouz, M.; Ahmadian, M.

Organic Letters

Tetrahedron 2000, 56, 5259. (e) Buonora, P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099. (f) Pellissier, H. Tetrahedron 2009, 65, 2839. (g) Jiang, X.; Wang, R. Chem. Rev. 2013, 113, 5515.

(2) For selected examples, see: (a) Gunatilaka, A. A. L. J. Nat. Prod. 2006, 69, 509. (b) Li, M.; Tang, C.; Yang, J.; Gu, Y. Chem. Commun. 2011, 47, 4529. (c) Zhu, X.-B.; Wang, M.; Wang, S.; Yao, Z.-J. Tetrahedron 2012, 68, 2041. (d) Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and Its Derivative; Rubiralta, M., Giralt, E., Diez, A., Eds.; Elsevier: Amsterdam, 1991.

(3) For selected examples, see: (a) Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am. Chem. Soc. 2000, 122, 1635. (b) Chavez, D. E.; Jacobsen, E. N. Org. Lett. 2003, 5, 2563. (c) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070. (d) Abraham, C. J.; Paull, D. H.; Scerba, T. M.; Grebinski, J. W.; Lectka, T. J. Am. Chem. Soc. 2006, 128, 13370. (e) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2007, 129, 1480. (f) Xie, M.; Chen, X.; Zhu, Y.; Gao, B.; Lin, L.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2010, 49, 3799. (g) Dong, S.; Liu, X.; Chen, X.; Mei, F.; Zhang, Y.; Gao, B.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2010, 132, 10650. (h) Jiang, X.; Shi, X.; Wang, S.; Sun, T.; Cao, Y.; Wang, R. Angew. Chem., Int. Ed. 2012, 51, 2084. (i) Jiang, X.; Wang, L.; Kai, M.; Zhu, L.; Yao, X.; Wang, R. Chem.—Eur. J. 2012, 18, 11465. (j) Li, P.; Yamamoto, H. J. Am. Chem. Soc. 2009, 131, 16628. (k) Matsumura, Y.; Suzuki, T.; Sakakura, A.; Ishihara, K. Angew. Chem., Int. Ed. 2014, 53, 6131.

(4) For examples of enamines in diverse IED DA reactions, see:
(a) Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 1498.
(b) Samanta, S.; Krause, J.; Mandal, T.; Zhao, C.-G. Org. Lett. 2007, 9, 2745.
(c) Jiang, X.; Fu, D.; Shi, X.; Wang, S.; Wang, R. Chem. Commun. 2011, 47, 8289.
(d) Xu, Z.; Liu, L.; Wheeler, K.; Wang, H. Angew. Chem., Int. Ed. 2011, 50, 3484.

(5) For examples of enamines in IED aza-DA reactions, see: (a) Han, B.; Li, J.-L.; Ma, C.; Zhang, S.-J.; Chen, Y.-C. *Angew. Chem., Int. Ed.* **2008**, 47, 9971. (b) Li, J.-L.; Zhou, S.-L.; Han, B.; Wu, L.; Chen, Y.-C. *Chem. Commun.* **2010**, 46, 2665. (c) Zhou, S.-L.; Li, J.-L.; Dong, L.; Chen, Y.-C. *Org. Lett.* **2011**, 13, 5874. (d) Li, Q.-Z.; Ma, L.; Dong, L.; Chen, Y.-C. *ChemCatChem* **2012**, 4, 1139.

(6) For examples of dienamines in DA cycloadditions, see: (a) Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973. (b) de Figueiredo, R. M.; Fröhlich, R.; Christmann, M. Angew. Chem., Int. Ed. 2008, 47, 1450. (c) Wang, Z.-Y.; Wong, W.-T.; Yang, D. Org. Lett. 2013, 15, 4980. (d) Johansen, T. K.; Gómez, C. V.; Bak, J. R.; Davis, R. L.; Jørgensen, K. A. Chem.-Eur. J. 2013, 19, 16518. (e) Song, A.; Zhang, X.; Song, X.; Chen, X.; Yu, C.; Huang, H.; Li, H.; Wang, W. Angew. Chem., Int. Ed. 2014, 53, 4940. (f) Halskov, K. S.; Donslund, B. S.; Barfüsser, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2014, 53, 4137. In IEDDA cycloadditions, see: (g) Li, J.-L.; Kang, T.-R.; Zhou, S.-L.; Li, R.; Wu, L.; Chen, Y.-C. Angew. Chem., Int. Ed., 2010, 49, 6418. (h) Li, J.-L.; Zhou, S.-L.; Chen, P.-Q.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Chem. Sci. 2012, 3, 1879. In [3 + 2] cycloadditions, see: (i) Li, W.; Wei, J.; Jia, Q.; Du, Z.; Zhang, K.; Wang, J. Chem.-Eur. J. 2014, 20, 6592. In [2 + 2] cycloadditions, see: (j) Albrecht, Ł.; Dickmeiss, G.; Acosta, F. C.; Rodríguez-Escrich, C.; Davis, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2012, 134, 2543. (k) Parra, A.; Reboredo, S.; Alemán, J. Angew. Chem., Int. Ed. 2012, 51, 9734.

(7) For an example of dienamines in aza-DA cycloadditions, see: Han, B.; He, Z.-Q.; Li, J.-L.; Li, R.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C. Angew. Chem., Int. Ed. **2009**, 48, 5474.

(8) (a) Albrecht, Ł.; Dickmeiss, G.; Weise, C. F.; Rodrguez-Escrich,
C.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2012, 51, 13109. (b) Weise,
C. F.; Lauridsen, V. H.; Rambo, R. S.; Iversen, E. H.; Olsen, M.-L.;
Jørgensen, K. A. J. Org. Chem. 2014, 79, 3537.

(9) Abramovitch, R. A.; Shinkai, I.; Mavunkel, B. J.; More, K. M.; O'Conner, S.; Ooi, G. H.; Pennington, W. T.; Srinivasan, P. C.; Stowers, J. R. *Tetrahedron* **1996**, *52*, 3339.

(10) Feng, X.; Zhou, Z.; Ma, C.; Yin, X.; Li, R.; Dong, L.; Chen, Y.-C. Angew. Chem., Int. Ed. 2013, 52, 14173.

(11) Ma, C.; Gu, J.; Teng, B.; Zhou, Q.-Q.; Li, R.; Chen, Y.-C. Org. Lett. 2013, 15, 6206.

(12) Yin, X.; Zheng, Y.; Feng, X.; Jiang, K.; Wei, X.-Z.; Gao, N.; Chen, Y.-C. Angew. Chem., Int. Ed. 2014, 53, 6245.

(13) For pioneering aza-DA reactions with acyclic 1-azadienes, see:
(a) Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517.
(b) Boger, D. L.; Corbett, W. L.; Wiggins, J. M. J. Org. Chem. 1990, 55, 2999.
(c) Boger, D. L.; Curran, T. T. J. Org. Chem. 1990, 55, 5439.
(d) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J. Am. Chem. Soc. 1991, 113, 1713.
(e) Boger, D. L.; Cassidy, K. C.; Nakahara, S. J. Am. Chem. Soc. 1993, 115, 10733.
(f) Boger, D. L.; Hong, J. J. Am. Chem. Soc. 1998, 120, 1218. For more catalytic asymmetric examples, see:
(g) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418.
(h) Simal, C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Angew. Chem., Int. Ed. 2012, 51, 3653.
(i) Zhao, X.; Ruhl, K. E.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 12330.
(j) Jiang, X.; Liu, L.; Zhang, P.; Zhong, Y.; Wang, R. Angew. Chem., Int. Ed. 2013, 52, 11329.

(14) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Acc. Chem. Res. **2012**, 45, 248.

(15) (a) Liu, Y.-K; Ma, C.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C. Org. Lett. 2009, 11, 2848. (b) Ma, C.; Jia, Z.-J.; Liu, J.-X.; Zhou, Q.-Q.; Dong, L.; Chen, Y.-C. Angew. Chem., Int. Ed. 2013, 52, 948.

(16) Tripathi, M.; Dhar, D. N. J. Heterocyclic Chem. 1988, 25, 1191.

(17) Bradshaw, B.; Parra, C.; Bonjoch, J. Org. Lett. 2013, 15, 2458.

(18) For related heterocyclic systems, see: (a) Hutait, S.; Singh, V.; Batra, S. Eur. J. Org. Chem. 2010, 6269. (b) Carranco, I.; Díaz, J. L.; Jiménez, O.; Vendrell, M.; Albericio, F.; Royo, M.; Lavilla, R. J. Comb. Chem. 2005, 7, 33. (c) Noguchi, M.; Mizukoshi, T.; Nishimura, S. Bull. Chem. Soc. Jpn. 1997, 70, 2201. (d) Shimoji, Y.; Hashimoto, T.; Furukawa, Y.; Yanagisawa, H. Heterocycles 1993, 36, 123.

(19) Paolobelli, A. B.; Latini, D.; Ruzziconi, R. Tetrahedron Lett. 1993, 34, 721.

(20) For related heterocyclic systems, see: (a) Kariba, R. M.;
Houghton, P. J.; Yenesew, A. J. Nat. Prod. 2002, 65, 566. (b) Kariba, R. M.;
Siboe, G. M.; Dossaji, S. F. J. Ethnopharmacol. 2001, 74, 41.
(c) Guo, L.-W.; Zhou, Y.-L. Phytochemistry 1993, 34, 563.

(21) N-Heterocyclic carbene catalyst is crucial for the observed regioselective aldol reaction, and no desired reaction occurred by using other Brønsted bases. N-Heterocyclic carbenes have been reported as good Brønsted base catalysts; see: Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906.