1	292	

Table I.	Solvolytic Rate Constants for	
2-(Triflu	oromethyl)-2-adamantyl Tosylate (1) at 25	°C

solvent ^a	Y _{OTs}	k_{obsd} , $b s^{-1}$	$k_{\rm rel}$ -(2-AdOTs/1) ^d
CF ₃ CO ₂ H	4.57	4.97×10^{-4}	1.81
97% (CF ₃) ₂ CHOH	3.61	3.43×10^{-5}	2.84
HCO ₂ H	3.04	1.39×10^{-5}	1.91
97% ČF₃CH₂OH	1.83	1.20×10^{-6c}	1.37

"TFA, HFIP, and TFE are CF₃CO₂H, (CF₃)₂CHOH, and CF₃C-H2A, HFIP, and FPE are CF₃CO₂A, (CF₃)₂CHOH, and CF₃C-H₂OH, respectively. ^bMeasured by UV spectroscopy; at least two determinations of each rate constant. ^cExtrapolated from the following: 2.71 × 10⁻⁴ s⁻¹ (73.4 °C), 2.83 × 10⁻⁵ s⁻¹ (52.1 °C), and 1.42 × 10⁻⁵ (45.3 °C); $\Delta H^* = 22.5$ kcal/mol, $\Delta S^* = -10.2$ eu. ^d2-AdOTs values from ref 6a.

We attribute the remarkably high reactivity of 1 to a combination of relief of ground-state strain^{3c,7} and electron donation from the C_3-C_4 bond. Even though CF_3 is often thought of as a small group, it is significantly larger than CH₃ by a variety of measures,⁸ and steric effects of substituents are proposed^{3c} to be enhanced in rigid adamantyl as opposed to more flexible systems. Calculations using the program Macromodel 2 indicate a 4.0 kcal/mol greater energy for the CF₃ in 1 compared to the axial CF₃ in trans-4-tert-butyl-1-(trifluoromethyl)cyclohexyl tosylate, so the A value of 2.5 kcal/mol for CF₃^{8a} leads to a crude estimate of 6.5 kcal/mol for the total strain due to CF_3 in 1. Solvolysis transition states resemble fully formed carbocations,9ª so essentially all this strain can be lost in the transition state, causing an acceleration in the rate of 1.

There is strong recent evidence for electron donation from the C_3-C_4 bond in adamantyl cations,^{9b-f} and such participation in 1 leads to the cation 2, which forms the protoadamantyl ring system 3 (eq 1). The protoadamantyl system is estimated to be 11 kcal/mol more strained than the parent adamantyl system,^{3d} but substituents at the 3-position in protoadamantane as in 3 are not crowded.^{3d} Thus formation of the transition state leading to 2 results in a decrease in the CF_3 nonbonding interaction of 1 but an increase in ring strain characteristic of 3. A strong electronic driving force for formation of an ion which diminishes positive charge buildup adjacent to CF_3 is expected.¹⁰ Rearrangement^{11a} without appreciable kinetic acceleration^{11b,c} occurs in related acyclic systems.

2-Benzoyl-2-adamantyl mesylate (6) is more reactive than 2-adamantyl mesylate by factors ranging from 164 to 356,6c,d and while steric effects were considered to account for this high reactivity, conjugative effects were favored. Similarly 2-(trimethylsilyl)-2-adamantyl *p*-nitrobenzoate was proposed to "solvolyse without significant steric acceleration".¹² This may be true, but our results suggest that steric effects in formation of 2-adamantyl carbocations should not be underestimated.

The molecular structure of 1 determined by X-ray by Dr. Jeffery Sawyer requires further refinement but shows geometrical distortions due to strain, including bending of the CF₃ group away

 (10) (a) Gassen, K.-R.; Kirmse, W. Chem. Ber. 1986, 119, 2233-2248. (b)
 Paddon-Row, M. N.; Santiago, C.; Houk, K. N. J. Am. Chem. Soc. 1980, 102, 6561-6563

(12) Apeloig, Y.; Stanger, A. J. Am. Chem. Soc. 1985, 107, 2806-2807.

from the adjacent axial hydrogens which still have close contacts (2.27 and 2.36 Å) with one of the fluorines. Our own studies of the correlation of chemical reactivity with X-ray structure^{13a,b} make us more cautious than others^{13c} in cause and effect interpretations of such results, but the structural distortions are at least consistent with major steric interactions, as also seen in 2-cumyl-2-adamantanol.13d

In summary, the destabilizing effect of the CF₃ group in the solvolysis of 1 is drastically attenuated, a result attributed to relief of ground-state strain and electron donation from the C_3 - C_4 bond. This result has implications for the consideration of the size of fluorinated groups and for possible effects of steric strain in other adamantyl systems, such as 2-benzoyl-^{6c,d} and 2-(trimethyl-silyl)adamantyl sulfonates,¹² in which possible steric effects were discounted.

Acknowledgment. The financial support of the Natural Sciences and Engineering Research Council of Canada, NATO, the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the U.S. National Science Foundation and helpful discussions with Professor G. A. Olah are gratefully acknowledged. The Macromodel 2 calculations were carried out by Dr. R. C. Kelly using facilities kindly provided by Professor P. A. Wender at Stanford University.

Regiocontrolled and Stereocontrolled C-C Bond Formation via Linear Dimerization of Conjugated **Dienes Catalyzed by Nickel-Aminophosphinite** Complexes

Philippe Denis, André Jean, Jean François Crcizy, André Mortreux,* and Francis Petit

> Laboratoire de Chimie Organique Appliquée URA CNRS 402, UST Lille Flandres Artois, ENSCL BP108, 59652 Villeneuve d'Ascq Cédex, France Received May 30, 1989

Linear dimerization of butadiene $2C_4H_6 \rightarrow 1,3,6$ -octatrienes has been shown to occur readily at room temperature on nickel modified by aminophosphinite ligands catalysts Ph₂POCHR¹CHR²NHR³ (AMP).¹ With such complexes, obtained by interaction between $Ni(COD)_2$ and these AMP ligands, the reaction rate is ca. 1-2 orders of magnitude higher than observed in other systems using either morpholine,² ethanol,³ or P-methyloxaphospholidines⁴ as modifiers. The higher reactivity of these new Ni-AMP systems prompted us to study the mechanism of the reaction upon using labeled reagents and the extension of this catalysis to other substituted and functionalized 1,3-dienes.

In order to prove the contribution of the pendant NH moiety in the reaction pathway, we have first conducted the reaction with perdeuterated butadiene C_4D_6 to obtain almost pure deuterated 1,3,6-octatrienes.⁵ A second experiment involved the use of a

0002-7863/90/1512-1292\$02.50/0 © 1990 American Chemical Society

^{(7) (}a) Tidwell, T. T. Tetrahedron 1978, 34, 1855-1868. (b) Fărcasiu,

^{(7) (}a) Tidwell, T. T. Tetrahedron 1978, 34, 1855-1868. (b) Fărcasiu,
D. J. Org. Chem. 1978, 43, 3878-3882.
(8) (a) Della, E. W. J. Am. Chem. Soc. 1967, 89, 5221-5224. (b) Hansch,
C.; Leo, A. J. Substituent Constants for Correlation analysis in Chemistry and Biology; Wiley, 1979. (c) Charton, M. Top. Curr. Chem. 1983, 114, 57-91. (d) Meyer, A. Y. J. Chem. Soc., Perkin Trans. 2 1986, 1567-1572.
(9) (a) Arnett, E. M.; Preto, C.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 101, 522-526. (b) Finne, E. S.; Gunn, J. R.; Sorensen, T. S. Ibid. 1987, 109, 7816-7823. (c) Laube, T.; Stilz, H. U. Ibid. 1987, 109, 5876-5878. (d) Lin,
M.-H.; Cheung, C. K.; le Noble, W. J. Ibid. 1988, 110, 6562-6563. (e) Xie,
M.; le Noble, W. J. J. Org. Chem. 1989, 54, 3839-3841. (f) Dutler, R.; Rauk,
A.; Sorensen, T. S.; Whitworth, S. M. J. Am. Chem. Soc. 1989, 111, 9024-9029. 9024-9029

^{(11) (}a) Roberts, D. D.; Hall, E. W. J. Org. Chem. 1988, 53, 2573-2579. (b) Ward, S.; Rhodes, Y. E. Abstracts of Papers, 194th National Meeting of the American Chemical Society, New Orleans, LA; American Chemical Society: Washington, DC, 1987; ORGN 176. (c) Shiner, V. J., Jr.; Seib, R. C. Tetrahedron Lett. 1979, 123-126.

^{(13) (}a) Allen, A. D.; Kwong-Chip, J. M.; Mistry, J.; Sawyer, J. F.; Tidwell, T. T. J. Org. Chem. 1987, 52, 4164-4171. (b) Kanagasabapathy, V. M.; Sawyer, J. F.; Tidwell, T. T. Ibid. 1985, 50, 503-509. (c) Edwards, M. R.; Jones, P. G.; Kirby, A. J. J. Am. Chem. Soc. 1986, 108, 7067-7073. (d) Choi, H. Pinketton, A. S. F. L. L. Chem. Soc. 1986, 108, 7067-7073. H.; Pinkerton, A. A.; Fry, J. L. J. Chem. Soc., Chem. Commun. 1987, 225-226.

⁽¹⁾ Denis, P.; Mortreux, A.; Petit, F.; Buono, G.; Peiffer, G. J. Org. Chem. 1984, 49, 5274.

^{(2) (}a) Heimbach, P. Angew. Chem. 1968, 80, 967. (b) Bartik, T.; Behler, Heimbach, P.; Ndalut, P.; Sebastian, J.; Sturn, H. Z. Naturforsch. 1984, 39b, 1529.

⁽³⁾ Pittman, C. U., Jr.; Smith, L. R. J. Am. Chem. Soc. 1975, 97, 341.
(4) Richter, W. J. J. Mol. Catal. 1986, 34, 145.
(5) The experimental conditions are typically those used in our preliminary work (see ref 1), with the (D)EPHOSNH [Ph₂POCH(Ph)CH(Me)NHMe] ligand.

Scheme I

5.5%

deuterated PPh₂OCH(Ph)CH(Me)NDMe [(D)EPHOSND] ligand, with C₄H₆ as substrate: the reaction was then stopped rapidly in order to analyze the dimer products arising from the first turnover of the catalytic reaction.⁶ From a comparison between the deuterium spectra of perdeuterated octatrienes and that of this compound, we have been able to assign unambiguously the presence of deuterium at the C-8 carbon atom of the triene, that is, CH₂—CHCH—CHCH₂CH—CHCH₂D.⁷ This is in total agreement with a previous mechanistical hypothesis by Heimbach,² where the NH moieties of morpholine were suggested to be responsible for the production of linear dimers, via oxidative addition on an $(\eta^1:\eta^3$ -octadienediyl) complex 1 followed by hydrogen addition on the σ part of the C-8 complexed ring, and β hydrogen elimination at C-4 to give the 1,3,6-octatriene derivatives (Scheme I).

12%

21.5%

Attempts to dimerize isoprene and piperylene were done on the same catalytic system. In the case of isoprene, both cyclic and linear dimerization occurred, although the linear compounds predominate (Scheme II). The catalytic activity decreases greatly, however, as compared to butadiene; for a substrate/catalyst ratio of 50, a 90% conversion was only obtained after 19 h at 40 °C [AMP = (D)EPHOSNH].

An interesting feature to be considered here is the fact that only a *tail to tail* linkage is observed to produce initially a mixture of 2,7-dimethyl-1,3,6-octatrienes which isomerize further into the 2,4,6 conjugated isomers.

The behaviour of 1,3-pentadiene is very interesting in several respects (Scheme III): (i) A 95% conversion is obtained at 40 °C within 3 h for a substrate/Ni ratio of 100. (ii) The reaction gives exclusively linear dimers. (iii) These arise from a selective

Scheme III

Table I.	Linear	Dimerization	of Dienic	Esters	on
Ni(COD)2-(D)	EPHOSNH C	atalysts		

diene	diene/ Ni	<i>Т</i> , °С	time, h	convn, %	product
CO ⁵ We	50	40	0.5	98	MeO ₂ CCH= CHCH= CHCH ₂ CH= CHCH ₂ CO ₂ Me (seven isomers)
CO2Me	50	80	46	92	MeO ₂ CCH= CHCH=C(Me)- CH(Me)CH= CHCH ₂ CO ₂ Me (85% <i>E,E,E</i> , 13% <i>E,E,Z</i>)

head to head linkage, and therefore, the reaction produces prochiral 4,5-dimethyl-1,3,6-octatrienes. An isomerization process occurs also as a consecutive reaction. (iv) As soon as a chiral ligand is used [(1*R*,2*S*)-EPHOSNH], the catalytic mixtures are optically active. Isolation of the *E*,*E* and *E*,*Z* isomers of 4,5dimethyl-1,3,6-octatriene gives pure products whose specific rotation [α]²⁰_D are +26° and -143°, respectively.

The separation of the enantiomers was performed via the LIS technique, upon using a mixture of $Eu(tfc)_3$ and Ag(fod) (tfc = trifluoroacetylcamphorato; fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyloctanedione). Provided the Ag(fod) was added to the olefinic compound, a splitting occurs at the vinylic proton on C-6.

This allowed estimation of the ee's of the E, E and E, Z isomers as 35 ± 5 and $90 \pm 5\%$, respectively.

Concerning functionalized diene dimerization on nickel catalysts, the results obtained so far in the literature have shown that only esters and silyl ethers could be transformed into cyclodimers, using a low substrate/catalyst ratio and long reaction times (1 day).^{8,9}

With this new system, linear dimerization is observed with dienic esters, whereas it fails with other functionalized groups such as NEt₃, OMe, OSiMe₃, and OAc.

Good activity is observed with methyl penta-2,4-dienoate, with an exclusive *tail to tail* linkage into linear dimers (Table I).

Although the reaction requires higher temperatures and reaction times with methyl sorbate, the new dimers 1,8-bis(methoxycarbonyl)-4,5-dimethyl-1,3,6-octatriene are produced as an E,E,Eand E,E,Z mixture and gave specific rotations of -2° and -1.5° , respectively. This shows again that the dimerization occurs regioselectively, and also with some enantioselectivity, for which analyses are in progress to determine the ee's.

Further studies will be carried out in due course in order to apply this catalytic system to cross reactions between different dienes for generalization of this process.

Supplementary Material Available: General procedures for syntheses of the aminophosphinite ligands and catalytic reactions,

⁽⁶⁾ This experiment used *n*-pentane as solvent and a butadiene/nickel ratio of 5, at 0 $^{\circ}$ C, the reaction being stopped rapidly in order to avoid further production of unlabeled octatrienes.

⁽⁷⁾ The NMR signal of this allylic deuterium atom is easily distinguished from the resonances of the other deuterium atoms, the nearest neighboring signals (allylic CD_2) appearing at 1.1 ppm downfield.

^{(8) (}a) Buch, H. M.; Schroth, G.; Mynott, R. J. Organomet. Chem. 1983, 63, 247. (b) Ténaglia, A.; Brun, P.; Waegell, B. Tetrahedron Lett. 1985, 26, 3571; J. Organomet. Chem. 1985, 285, 343.

⁽⁹⁾ Bartik, T.; Heimbach, P.; Himmler, T.; Mynott, R. Angew. Chem., Int. Ed. Engl. 1985, 4, 24.

infrared and ¹H and ¹³C NMR data for dimers described in this work, ²H NMR spectra of perdeuterated and monodeuterated octatrienes, and 400-MHz ¹H NMR spectra of (E,E)-4,5-dimethyl-1,3,6-octatriene without and in the presence of Eu(tfc)₃ and Ag(fod) (5 pages). Ordering information is given on any current masthead page.

Dihydrogen Complexes of Metalloporphyrins: Characterization and Hydrogen-Transfer Reactivity

James P. Collman,* Paul S. Wagenknecht, Robert T. Hembre,^{1a} and Nathan S. Lewis^{1b}

> Department of Chemistry, Stanford University Stanford, California 94305

Received September 25, 1989

Extensive reports of η^2 coordination of dihydrogen to transition metals² have recently led to speculation that the η^2 -dihydrogen complexes and their corresponding transition-metal hydrides may be important in the biological activation of molecular hydrogen. We now report that protonation of transition-metal porphyrin hydrides has yielded the first known dihydrogen complex of a metalloporphyrin and a system that performs some functions of hydrogenase enzymes.4

The previously reported monohydrides, ^{5,6} K[M(OEP)(H)], M = Ru (RuH), Os (OsH), were prepared by potassium metal reduction of the corresponding dimers [M(OEP)]₂ in THF followed by protonation with excess water or tert-butyl chloride. The ¹H NMR spectrum shows that protonation of OsH with benzoic acid in THF affords in approximately 30% yield a porphyrinic product formulated as $Os(OEP)(H_2)$, OsH_2 .^{7,8} In particular, the high-field singlet of **OsH**₂ (δ -30.00)⁹ is replaced by a triplet (δ -30.01, ¹J_{HD} = 12 Hz) when Os(OEP)(HD), OsHD, is formed by the reaction of **OsH** with benzoic acid- d_1 . The magnitude of this coupling and the minimum observed relaxation time ($T_1 = 110 \pm 8$ ms for OsH₂ at -20 °C in THF) suggest the presence of an η^2 -dihydrogen ligand.^{10,12} In addition, the methylene protons of the OEP ethyl

(1) Present addresses: (a) Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE 68588. (b) Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.

(9) Transition-metal hydride resonances of porphyrins are shifted to very high field by the porphyrin ring current effect.⁵ The hydride resonance of OsH before protonation to OsH_2 is -65.6 ppm.

substituents appear as a multiplet in the 400-MHz NMR spectrum, indicating that the two faces of the porphyrin are inequivalent¹⁷ and precluding the presence of the *trans*-dihydride.

The above NMR parameters are consistent with formulation of **OsH**₂ as a dihydrogen complex rather than a *cis*- or *trans*dihydride. However, both ${}^{1}J_{HD}$ and T_{1} are near the limits proposed for formulation as η^2 coordination. The 12-Hz coupling constant is notably lower than that seen for most molecular hydrogen complexes in the literature (18 Hz $< {}^{1}J_{HD} < 34$ Hz),² although values as low as 13.7 Hz have been reported.¹⁸ Additionally, T_1 is in the upper limit of the range acceptable for unambiguous classification as a molecular hydrogen complex. Together, these parameters suggest a weaker H-H interaction than found in most dihydrogen complexes. Because the H_2 binding mode is suggested to be dependent upon backbonding from the metal, dinitrogen stretching frequencies of $L_n M(N_2)$ complexes (diagnostic of the extent of metal backbonding to the N_2 ligand) have been used to predict the stability and coordination mode of the corresponding $L_n MH_2$ complexes.¹⁹ The $\nu(N_2)$ for Os(OEP)(THF)(N₂) is 2030 cm^{-1} ,²⁰ which is in the range where the corresponding H₂ complex, OsH_2 , is expected to exist as a dihydride (<2060 cm⁻¹), and slightly below the range used to predict stable η^2 -H₂ complexes (2060-2150) cm⁻¹). Such a $\nu(N_2)$ value reflects strong backbonding by the Os(II) center, a property conducive to increasing the dihydride character of the dihydrogen complex. The T_1 , ${}^1J_{HD}$, and $\nu(N_2)$ values are thus self-consistent and suggest that the electronic nature of Os(OEP) favors dihydride formation but that the rigid porphyrin constrains the H_2 to a single coordination site.

Since the dinitrogen stretching frequency for Ru(OEP)-(THF)(N₂) is 2110 cm⁻¹,²¹ a dihydrogen complex of Ru(OEP)should have less dihydride character than the osmium analogue. Protonation of RuH with benzoic acid in THF results in rapid quantitative loss of dihydrogen to yield the bis solvato complex, Ru(OEP)(THF)₂, Ru(THF)₂. Such hydrogen loss is not surprising since Ru(II) is substitutionally more labile than Os(II). Even under 1 atm of H_2 in THF, $Ru(THF)_2$, known to be substitutionally labile,²² does not form the proposed $Ru(OEP)(H_2)$ in quantities observable by ¹H NMR.

Although we have been unable to observe $Ru(OEP)(H_2)$ by NMR, its presence is suggested by the catalytic activity of **Ru**-(THF)₂ for H/D isotope exchange. A 10 mM solution of Ru(-**THF**)₂ in THF containing 12 equiv of KOD and 570 equiv of D_2O exchanges 6.9 equiv of deuterium between D_2O and H_2 gas when stirred at 50 °C under 0.13 atm of H₂ for 160 min²³ (eq 1). In

THF

$$H_2$$
 + KOD + D₂O + H₂ $H_2/HD/D_2$ (1)
THF

(10) ${}^{1}J_{HD}$ for cis-dihydrides are typically <1 Hz, 11 1 order of magnitude smaller than those typical of dihydrogen complexes.

(11) Moore, D. S.; Robinson, S. D. *Chem. Soc. Rev.* **1983**, 12, 415–452. (12) Relaxation times were measured over the temperature range -80 to °C. This minimum T_1 value is within the range generally accepted for 20 °C. classification of the complex as a molecular hydrogen complex (<160 ms at 400 MHz).¹³⁻¹⁶

(13) Crabtree, R. H.; Hamilton, D.; Lavin, M. In *Experimental Organo-metallic Chemistry*; Wayda, A. L., Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; pp 223-226.
(14) Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 111.

4126-4133

(15) The reliability of T_1 measurements in predicting whether polyhydride complexes contain molecular hydrogen ligands has recently been questioned for complexes where the number of metal-bound hydrogen atoms is not two. Cotton, F. A.; Luck, R. L. J. Am. Chem. Soc. 1989, 111, 5757-5761.

(16) T_1 values were measured by the standard method of inversion recovery (400-MHz NMR).

- (17) Busby, C. A.; Dolphin, D. J. Magn. Reson. 1976, 23, 211-220.
 (18) Siedle, A. R.; Newmark, R. A.; Korba, G. A.; Pignolet, L. H.; Boyle,
 P. D. Inorg. Chem. 1988, 27, 1593-1598.
- (19) Morris, R. H.; Kelly, E. A.; Luck, R. L.; Lazarowych, N. J.; Sella, Inorg. Chem. 1987, 26, 2674-2683.
 (20) Buchler, J. W.; Smith, P. D. Angew. Chem., Int. Ed. Engl. 1974, 13, Α.
- 745.

(21) Camenzind, M. J.; James, B. R.; Dolphin, D.; Sparapany, J. W.; Ibers, J. A. *Inorg. Chem.* **1988**, *27*, 3054–3057.
(22) Collman, J. P.; Venburg, G. D., unpublished results.

^{(2) (}a) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; (2) (a) Kubas, G. J.; Ryan, R. K.; Swanson, B. I.; Vergamini, P. J.;
Wasserman, J. J. J. Am. Chem. Soc. 1984, 106, 451-452. (b) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120-128 and references therein. (c) Crabtree, R. H.; Lavin, M.; Bonneviot, L. J. Am. Chem. Soc. 1986, 108, 4032-4037. (d) Bautista, M.; Kelly, E. A.; Morris, R. H.; Sella, A. J. Am. Chem. Soc. 1987, 109, 3780-3782. (e) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865-5867. (f) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1987, 1675-1676. (g) Cotton, F. A.; Luck, R. L. J. Chem. Soc., Chem. Commun. 1988, 1277-1278.
(a) (a) Crabtree, R. H. Inore, Chim. Acta 1986, 125, L7-L8. (b) Al-

<sup>Soc., Chem. Commun. 1988, 1277-1278.
(3) (a) Crabtree, R. H. Inorg. Chim. Acta 1986, 125, L7-L8. (b) Albracht, S. P. J. Recl. Trav. Chim. Pays-Bas 1987, 106, 173. (c) Henderson, R. A. J. Chem. Soc., Chem. Commun. 1987, 1670-1671.
(4) Hydrogenase enzymes are suggested to contain no metalloporphyrins in the active site but rather FeS and NiS clusters. (a) Adams, M. W. W.; Mortenson, L. E.; Chen, J. S. Biochim. Biophys. Acta 1981, 594, 105-176.
(b) Walsh, C. T.; Orme-Johnson, W. H. Biochemistry 1987, 26, 4901-4906.
(c) Cammack, R. Adv. Inorg. Chem. 1988, 32, 297-333. (d) Moura, J. J. G.; Teixeira, M.; Moura, I.; LeGall, J. In The Bioinorganic Chemistry of Nickel; Lancaster, J. R., Ed.; VCH Publ. Inc.: New York, 1988; pp 191-226.
(5) Collman, J. P.; Brothers, P. J.; McElwee-White, L.; Rose, E. J. Am. Chem. Soc. 1985, 107, 6110-6111.
(6) Abbreviations: OEP = octaethylporphyrinato dianion; THF = tetrahydrofuran; NAD⁺ = nicotinamide adenine dinucleotide (oxidized form).</sup>

⁽⁷⁾ Os(OEP)(H₂): NMR (THF- d_8 , 400 MHz) H_{meso} 9.29 (s), CH₂ 3.83 (m), CH₃ 1.81 (t), Os(H₂) -30.00 (s) ppm. (8) The axial ligation of this species is unclear, though THF- d_8 is sus-

pected.