Organic & Biomolecular Chemistry

PAPER

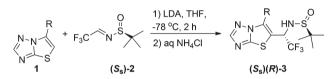
Cite this: Org. Biomol. Chem., 2014, 12, 2108

Concise and scalable asymmetric synthesis of 5-(1-amino-2,2,2-trifluoroethyl)thiazolo[3,2-b]-[1,2,4]triazoles†

Haibo Mei,^{a,b} Yiwen Xiong,^a Chen Xie,^a Vadim A. Soloshonok,^{c,d} Jianlin Han*^{a,b,e} and Yi Pan^a

This study describes asymmetric Mannich-type additions between C-5 lithiated thiazolo[3,2-*b*][1,2,4]-triazoles and enantiomerically pure (S_S)-*N*-tert-butanesulfinyl-(3,3,3)-trifluoroacetaldimine. Under the optimized conditions, these reactions proceed with good (up to 78%) chemical yields and virtually complete (98:2 to >99:1 dr) diastereoselectivity. The same stereochemical outcome was obtained using 1.05 g scale of the starting (3,3,3)-trifluoroacetaldimine. The method developed in this work provides concise and generalized access to thiazolo[3,2-*b*][1,2,4]triazoles containing a chiral (trifluoro)ethylamine group.

Received 24th November 2013, Accepted 29th January 2014


DOI: 10.1039/c3ob42348d

www.rsc.org/obc

Introduction

Heterocyclic compounds are quite commonly found in nature and have been attracting much attention of organic chemists for many decades.¹ In particular, the thiazolo[3,2-*b*][1,2,4]triazole fragment is found in many biologically active natural products.² Consequently, synthesis and biological study of new thiazolo[3,2-*b*][1,2,4]triazole derivatives is currently an active field of multidisciplinary research.^{3–5} It was found that the most promising biologically active types of thiazolo[3,2-*b*]-[1,2,4]triazoles usually contain functional chiral moieties.^{2–5} Accordingly, the development of concise and scalable methods for asymmetric modification of thiazolo[3,2-*b*][1,2,4]triazoles is an important yet challenging goal in synthetic organic and medicinal chemistry.^{6–8}

Taking into account the remarkable impact of fluorine on the development of biologically active compounds and pharmaceuticals,⁹⁻¹⁴ synthesis of fluorinated thiazolo[3,2-*b*]-[1,2,4]triazoles might be of great interest. Therefore,

considering our¹⁵ and others'¹⁶ recent interest in the chemistry of (S_S) -*N-tert*-butanesulfinyl-(3,3,3)-trifluoroacetaldimine¹⁷ we envisioned a direct, one-step introduction of the pharmacophoric 1-amino-2,2,2-trifluoroethyl moiety onto the thiazolo-[3,2-b][1,2,4]triazole rings. Herein, we report a study of asymmetric Mannich-type reactions between C-5 lithiated thiazolo-[3,2-b][1,2,4]triazoles and (S_S) -*N-tert*-butanesulfinyl-(3,3,3)trifluoroacetaldimine. These reactions were found to proceed with exceptional diastereoselectivity giving rise to virtually one product in good chemical yields (Scheme 1). The mechanism, structural generality of this method and its scalability are discussed.

Results and discussion

Based on our previous studies of the asymmetric reactions with *N*-*tert*-butylsulfinylimine,^{15*a*,*b*} the initial choice of the reaction conditions was focused on using sulfinylimine **2** with 1.5 equiv. of 6-phenylthiazolo[3,2-*b*][1,2,4]triazole **1a** in the presence of *n*-BuLi with THF as a solvent at -78 °C. The reaction proceeded smoothly within 2 hours, affording (entry 1, Table 1) the desired product **3a** in 61% yield. Determination of the diastereomeric purity by ¹H-NMR has revealed two

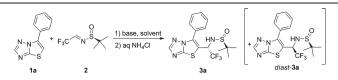
ROYAL SOCIET

View Article Online

^aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing,

^{210093,} China. E-mail: hanjl@nju.edu.cn; Fax: +86-25-83593153;

Tel: +86-25-83593153


^bInstitute for Chemistry & BioMedical Sciences, Nanjing University, Nanjing, 210093, China

^cDepartment of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain

^dIKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

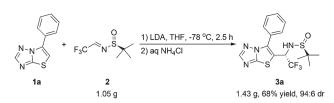
^e*High-Tech Research Institute of Nanjing University, Changzhou, 213164, China* †Electronic supplementary information (ESI) available: Experimental procedures, full spectroscopic data for compounds **3** and **4** and copies of ¹H NMR and ¹³C NMR spectra. CCDC 948095. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c30b42348d

Table 1 Optimization of the asymmetric Mannich-type addition reaction conditions⁴

Entry	Base	1a (equiv.)	Solvent	Time (h)	$T(^{\circ}C)$	$\operatorname{Yield}^{b}(\%)$	dr^c
1	<i>n</i> -BuLi	1.5	THF	2	-78	61	83:17
2	LDA	1.5	THF	2	-78	62	97:3
3	LiHDMS	1.5	THF	2	-78	42	76:24
4	(CH ₃) ₃ COLi	1.5	THF	2	-78	Trace	ND^d
5	(CH ₃) ₃ COK	1.5	THF	2	-78	Trace	ND^d
6	Cs_2CO_3	1.5	THF	2	-78	NR^{e}	_
7	LDA	1.2	THF	2	-78	40	87:13
8	LDA	1.7	THF	2	-78	71	98:2
9	LDA	1.7	Toluene	2	-78	26	79:21
10	LDA	1.7	Hexane	2	-78	27	82:18
11	LDA	1.7	CH_2Cl_2	2	-78	13	92:8
12	LDA	1.7	Et ₂ O	2	-78	37	90:10
13	LDA	1.7	THF	2	-41	72	93:7
14	LDA	1.7	THF	2	-22	64	91:9
15	LDA	1.7	THF	2	0	61	94:6
16	LDA	1.7	THF	1	-78	66	97:3
17	LDA	1.7	THF	3	-78	65	98:2

^{*a*} Reaction conditions: sulfinylimine (0.5 mmol), base (1.1 equiv. of **1a**), solvent (5 mL). ^{*b*} Isolated yields. ^{*c*} Determined by ¹⁹F or ¹H NMR analysis. ^{*d*} Not determined. ^{*e*} No reaction.

diastereomeric products (see ESI[†]) in a ratio of 83:17. Attempts to separate these two CF₃-containing products by column chromatography have failed, indicating insufficient difference in the physicochemical properties of the diastereomers. The fact that the separation of diastereomeric products is problematic has added an extra challenge to this work as only complete diastereoselectivity in these additions could render this method synthetically useful. Thus, systematic optimization was carried out to improve both the yield and, most importantly, the diastereoselectivity. First, the effect of a base used in these reactions was investigated. It was found that strong bases could give good results while the weak ones could not even catalyze the reaction (entries 2-6). LDA was found to be the best choice, providing for an acceptable yield and the desired high diastereoselectivity (62% yield and 97:3 dr, entry 2). Next, the loading amount of 6-phenylthiazolo-[3,2-b][1,2,4]triazole 1a was examined. The experiments have revealed that the use of 1.7 equiv. of 1a leads to the high yield and excellent diastereoselectivity (71% yield and 98:2 dr, entry 8). Reducing the amount of 1a resulted in an obvious decrease in both yield and diastereoselectivity (entry 7). The solvent was found to have a significant effect on the stereochemical outcome (entries 9-12), and THF was finally confirmed to be the best choice. Furthermore, temperature was also found to be an important factor in these reactions. Elevated reaction temperature brought a slight decrease in both yield and diastereoselectivity (entries 13-15). Finally, the screening of the reaction time demonstrated that this transformation could be reasonably completed within 2 hours. Thus, extending the reaction time resulted in a noticeable decrease in the


 Table 2
 Scope of thiazolo[3,2-b][1,2,4]triazoles for the asymmetric addition^a

$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & &$									
Entry	Substrate	R	Product	$\operatorname{Yield}^{b}(\%)$	dr ^c				
1	1a	Ph	3a	71	98:2				
2	1b	3-ClC ₆ H ₄	3b	73	>99:1				
3	1c	$3-BrC_6H_4$	3c	74	>99:1				
4	1d	$4-FC_6H_4$	3d	72	98:2				
5	1e	$4 - ClC_6H_4$	3e	66	>99:1				
6	1f	$4-BrC_6H_4$	3f	70	99:1				
7	1g	4-MeC ₆ H ₄	3g	73	>99:1				
8	1ĥ	$3,4-Cl_2C_6H_3$	3h	78	>99:1				
9	1i	2-Naphthyl	3i	68	>99:1				
10	1j	Me	3ј	40	>99:1				

^a Reaction conditions: sulfinylimine (0.5 mmol), 1 (0.85 mmol), LDA (0.94 mmol), THF (5 mL). ^b Isolated yields. ^c Determined by ¹⁹F NMR analysis.

yield, although it has almost no effect on the diastereo-selectivity (entry 17).

Having optimized the reaction conditions, our next goal was to examine the scope of these reactions using available thiazolo[3,2-b][1,2,4]triazoles (Table 2). Under the standard reaction conditions, all tested substrates reacted smoothly pointing to generality of this method. As shown in Table 2, the diastereoselectivity of the reactions was excellent, producing

Scheme 2 Example of a large-scale asymmetric synthesis of compound 3a.

virtually single diastereomer 3. Variation of substituents on the aromatic ring showed no significant effect on either chemical yield or diastereoselectivity. Both electron-deficient (entries 2–6) and electron-rich (entry 7) aryl-substituted thiazolo[3,2-*b*]-[1,2,4]triazoles gave equally good stereochemical outcome. In particular, thiazolo[3,2-*b*][1,2,4]triazoles with a di-substituted aromatic ring **1h** or naphthyl substituted **1i** were also well tolerated in this reaction affording products **3h**, **i** in good yields and with excellent diastereoselectivity (entries 8 and 9). In the case of alkyl substituted derivative **1j** the reaction yield was noticeably lower; however, the corresponding product **3j** was isolated as a single diastereomer (entry 10).

Finally, we tested this newly developed method for its reproducibility and efficiency on a gram scale. As one can see from Scheme 2, the reaction conducted under the standard conditions using 1.05 g of sulfinylimine 2 afforded the target product 3a with good yield (68%) and diastereoselectivity (94:6 dr). Diastereomerically pure 3a can be prepared by crystallization of the crude product. Thus, only a slight decrease in the yield and diastereoselectivity was detected as compared to the best result obtained on a 0.10 g scale. Consequently, this approach can be reliably used for relatively large scale synthesis of various fluorinated chiral thiazolo[3,2-*b*][1,2,4]triazole derivatives allowing for systematic biological studies of these new compounds.

To determine the absolute configuration of products 3, we took advantage of good crystallinity of compound 3a and conducted its crystallographic analysis (Fig. 1). As shown in Fig. 1, the absolute configuration of the newly generated chiral center in this process is *R*. The absolute configurations of other

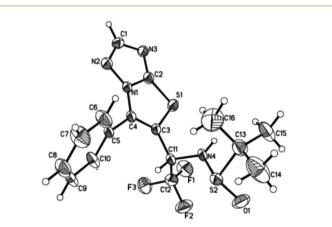


Fig. 1 ORTEP diagram showing compound (S_S)(R)-3a.

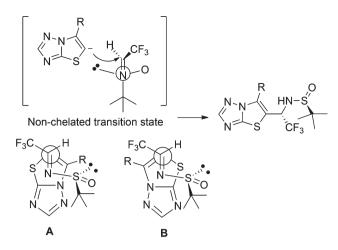
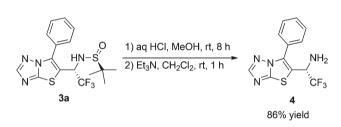



Fig. 2 Proposed mechanism for the asymmetric Mannich-type addition.

Scheme 3 Conversion of 3a to free chiral primary amine 4.

corresponding products were assigned by analogy, based on similarity of their chiroptic properties and spectral data.

Consistent with the literature data,¹⁸ the asymmetric Mannich-type addition reactions of thiazolo[3,2-*b*][1,2,4]triazoles to sulfinylimine 2 are suggested to proceed *via* a nonchelated transition state model. Thus, the lithiated thiazolo-[3,2-*b*][1,2,4]triazoles preferably approach the imine double bond from the less hindered face, occupied by the lone pair of electrons on sulphur, to afford the major diastereomer (Fig. 2). Furthermore, *via* this general approach, two possible orientations of the thiazolo[3,2-*b*][1,2,4]triazole anions **A** and **B** are possible. Considering obvious steric interactions of the CF₃ group and the substituent R in B, it is most likely that the transition state **A** might be preferred.

As the final task of this work, we studied an example of the chiral auxiliary removal and preparation of compound 4 with free amino function. Using relatively common conditions,^{15a,b} such as treatment of 3a with aqueous HCl in methanol (Scheme 3), the target amine 4 was obtained in high isolated yield of 86%.

Conclusions

In summary, we have demonstrated that the asymmetric Mannich-type addition reactions between lithium-derived imidazo[2,1-*b*]thiazoles and CF₃-sulfinylimine 2 occur with

General information

All imine addition reactions were performed in oven-dried vials under a N₂ atmosphere. Solvent THF was dried and distilled prior to use. Thiazolo[3,2-*b*][1,2,4]triazoles 1 were synthesized according to the literature.⁸ Sulfinylimine 2 was obtained from Accela ChemBio Co., Ltd. LDA (2 M in THF) was from Aldrich. These and other chemicals were used as obtained from commercial sources without further purification. Flash chromatography was performed using silica gel 60 (200–300 mesh). Thin layer chromatography was carried out on silica gel 60 F-254 TLC plates of 20 cm × 20 cm. Melting points are uncorrected. Values of optical rotation were measured on a Rudolph Automatic Polarimeter A21101. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AVANCE400M spectrometer. HRMS spectra were recorded using a Micromass GCT (TOF MS EI⁺).

Typical procedure for asymmetric addition of sulfinylimine

Into an oven-dried reaction vial flushed with N₂ were taken compound 1 (0.85 mmol) and anhydrous THF (3.0 mL). The reaction vial was cooled to -78 °C and LDA (2 M in THF, 0.47 mL) was added dropwise with stirring. After 1 h at -78 °C, sulfinylimine 2 (0.5 mmol) dissolved in anhydrous THF (2.0 mL) was added dropwise. Stirring was continued at -78 °C for 2 h, then the reaction was quenched with saturated NH₄Cl (3.0 mL) followed by H₂O (5.0 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product, which was purified by a TLC plate (hexane–EtOAc, 1:1).

3a: white solid, mp 192–193 °C, $[\alpha]_D^{25}$ +107.3 (*c* 1.05, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.18 (s, 1 H), 7.71–7.74 (m, 2 H), 7.57–7.62 (m, 3 H), 5.31–5.36 (m, 1 H), 3.91 (s, 1 H), 1.29 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.2, 155.8, 135.5, 130.9, 129.5, 129.4, 126.0, 125.1 (q, *J* = 281.0 Hz), 118.1, 56.9, 54.9 (q, *J* = 32.0 Hz), 22.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -73.8. HRMS (TOF MS EI⁺) *m*/*z*: calcd for [C₁₆H₁₇N₄OF₃S₂] 402.0796, found 402.0785.

3b: white solid, mp 185–187 °C, $[\alpha]_{D}^{25}$ +97.2 (*c* 0.79, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.19 (s, 1 H), 7.75 (d, *J* = 1.6 Hz, 1 H), 7.63–7.66 (m, 1 H), 7.52–7.58 (m, 2 H), 5.27–5.32 (m, 1 H), 3.93 (s, 1 H), 1.30 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.4, 156.0, 135.5, 134.0, 131.3, 130.8, 129.6, 127.7, 127.6, 125.0 (q, *J* = 281.0 Hz), 118.9, 57.0, 54.8 (q, *J* = 32.0 Hz), 22.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ = –73.7. HRMS [M + H⁺]: calcd for [C₁₆H₁₇ClN₄OF₃S₂] 437.0484, found 437.0482.

3c: white solid, mp 190–191 °C, $[\alpha]_{D}^{25}$ +94.5 (*c* 0.95, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.19 (s, 1 H), 7.90 (t, *J* = 2.0 Hz, 1 H), 7.68–7.73 (m, 2 H), 7.48 (t, *J* = 8.0 Hz, 1 H), 5.27–5.32 (m, 1 H), 3.92 (s, 1 H), 1.30 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.4, 155.9, 134.2, 133.9, 132.4, 131.0, 128.2, 127.8, 125.0 (q, *J* = 281.0 Hz), 123.5, 119.0, 57.0, 54.8 (q, *J* = 32.0 Hz), 22.5. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -73.7. HRMS [M + H⁺]: calcd for [C₁₆H₁₇BrN₄OF₃S₂] 480.9979, found 480.9974.

3d: white solid, mp 61–63 °C, $[\alpha]_{D}^{25}$ +107.9 (*c* 0.25, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.18 (s, 1 H), 7.73–7.76 (m, 2 H), 7.26–7.31 (m, 2 H), 5.25–5.30 (m, 1 H), 3.91 (s, 1 H), 1.29 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 165.4 (d, *J* = 251.0 Hz), 156.4, 156.0, 134.7, 131.9 (d, *J* = 9.0 Hz), 125.0 (q, *J* = 280.0 Hz), 122.0 (d, *J* = 3.0 Hz), 118.1, 117.0 (d, *J* = 22.0 Hz), 57.0, 54.8 (q, *J* = 32.0 Hz), 22.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ = –73.8, –107.9. HRMS [M + Na⁺]: calcd for [C₁₆H₁₆N₄OF₄S₂Na] 443.0599, found 443.0598.

3e: white solid, mp 67–69 °C, $[\alpha]_D^{25}$ +68.1 (*c* 0.23, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.18 (s, 1 H), 7.70 (d, *J* = 8.0 Hz, 2 H), 7.59 (d, *J* = 8.0 Hz, 2 H), 5.25–5.30 (m, 1 H), 3.92 (s, 1 H), 1.29 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.4, 156.0, 137.4, 134.5, 131.0, 129.9, 125.0 (q, *J* = 281.0 Hz), 124.3, 118.3, 57.0, 54.7 (q, *J* = 32.0 Hz), 22.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -73.8. HRMS [M + H⁺]: calcd for [C₁₆H₁₇ClN₄OF₃S₂] 437.0484, found 437.0477.

3f: white solid, mp 72–74 °C, $[α]_D^{25}$ +57.3 (*c* 0.22, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.18 (s, 1 H), 7.75 (d, *J* = 8.0 Hz, 2 H), 7.63 (d, *J* = 8.0 Hz, 2 H), 5.25–5.30 (m, 1 H), 3.92 (s, 1 H), 1.29 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.4, 156.0, 134.6, 132.9, 131.1, 125.8, 125.0 (q, *J* = 280.0 Hz), 124.8, 118.3, 57.0, 54.7 (q, *J* = 32.0 Hz), 22.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -73.8. HRMS [M + H⁺]: calcd for [C₁₆H₁₇BrN₄OF₃S₂] 480.9979, found 480.9980.

3g: white solid, mp 142–143 °C, $[α]_D^{25}$ +74.1 (*c* 0.52, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.17 (s, 1 H), 7.61 (d, *J* = 8.0 Hz, 2 H), 7.40 (d, *J* = 8.0 Hz, 2 H), 5.30–5.36 (m, 1 H), 3.88 (s, 1 H), 2.44 (s, 3 H), 1.28 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.2, 155.9, 141.4, 135.8, 130.2, 129.4, 125.1 (q, *J* = 281.0 Hz), 123.0, 117.5, 56.9, 54.9 (q, *J* = 32.0 Hz), 22.4, 21.5. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -73.8. HRMS [M + Na⁺]: calcd for [C₁₇H₁₉N₄OF₃S₂Na] 439.0850, found 439.0853.

3h: white solid, mp 66–68 °C, $[\alpha]_{\rm D}^{25}$ +68.3 (*c* 0.33, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.19 (s, 1 H), 7.89 (d, *J* = 2.0 Hz, 1 H), 7.69 (d, *J* = 8.0 Hz, 1 H), 7.63 (dd, *J* = 2.0, 8.0 Hz, 1 H), 5.25–5.30 (m, 1 H), 3.95 (s, 1 H), 1.30 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.5, 156.0, 135.8, 134.1, 133.1, 131.6, 131.4, 128.7, 125.7, 124.9 (q, *J* = 280.0 Hz), 119.1, 57.0, 54.7 (q, *J* = 32.0 Hz), 22.5. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -73.7. HRMS [M + Na⁺]: calcd for [C₁₆H₁₅Cl₂N₄OF₃S₂Na] 492.9914, found 492.9910.

3i: white solid, mp 166–167 °C, $[\alpha]_D^{25}$ +59.8 (*c* 1.13, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.28 (s, 1 H), 8.21 (s, 1 H), 8.08 (d, *J* = 8.0 Hz, 1 H), 8.00 (d, *J* = 8.0 Hz, 1 H), 7.94 (d, *J* = 8.0 Hz, 1 H), 7.79 (dd, *J* = 4.0, 8.0 Hz, 1 H), 7.56–7.64 (m, 2 H), 5.41–5.46 (m, 1 H), 3.94 (s, 1 H), 1.31 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.3, 156.0, 135.7, 134.1, 133.1, 130.1, 129.5, 128.8, 127.9, 127.8, 127.1, 125.5, 125.1 (q, *J* = 281.0 Hz), 123.3, 118.2, 57.0, 55.0 (q, *J* = 32.0 Hz), 22.5. ¹⁹F NMR (CDCl₃, 376 MHz): $\delta = -73.7$. HRMS [M + Na⁺]: calcd for [C₂₀H₁₉N₄OF₃S₂Na] 475.0850, found 475.0850.

3j: white solid, mp 193–194 °C, $[\alpha]_D^{25}$ +132.3 (*c* 0.56, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.18 (s, 1 H), 5.23–5.28 (m, 1 H), 3.91 (s, 1 H), 2.65 (s, 3 H), 1.29 (s, 9 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.0, 155.8, 131.6, 125.2 (q, *J* = 280.0 Hz), 116.4, 56.9, 54.1 (q, *J* = 32.0 Hz), 22.4, 11.5. ¹⁹F NMR (CDCl₃, 376 MHz): δ = -74.0. HRMS (TOF MS EI⁺) *m/z*: calcd for [C₁₁H₁₅N₄OF₃S₂] 340.0639, found 340.0633.

Reaction of large scale application study

In an oven-dried round-bottom flask flushed with N₂ were taken compound **1a** (8.5 mmol) and anhydrous THF (20.0 mL). The reaction flask was cooled to -78 °C and LDA (2 M in THF, 4.7 mL) was added dropwise with stirring. After 1 h at -78 °C, sulfinylimine 2 (5 mmol) dissolved in anhydrous THF (10.0 mL) was added dropwise. Stirring was continued at -78 °C for 2.5 h, then the reaction was quenched with saturated NH₄Cl (10.0 mL) followed by H₂O (15.0 mL) and the mixture was brought to room temperature. The organic layer was taken and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was removed to give the crude product, which was purified by column chromatography (hexane–EtOAc, 1 : 1).

Conversion of 3a affording free chiral primary amine 4

3a (0.5 mmol) and MeOH (5.0 mL) were placed in a 25 mL round-bottom flask and aq. HCl (36%, 1 mL) was added. The reaction was stirred at r.t. for 8 h, during which time the cleavage was monitored by TLC. Volatiles were removed under reduced pressure. The residue was dissolved in CH_2Cl_2 (10.0 mL) and Et_3N (15 mmol) was added. The reaction was stirred at rt for 1 h and then H_2O (10.0 mL) was added. The organic layer was taken, washed with H_2O (2 × 10 mL), dried with anhydrous Na_2SO_4 , filtered and the solvent was removed to give the crude product, which was purified by a TLC plate (hexane–EtOAc, 1 : 1).

4: white solid, mp 105–106 °C, $[\alpha]_D^{25}$ –2.6 (*c* 0.61, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ = 8.15 (s, 1 H), 7.64–7.68 (m, 2 H), 7.57–7.60 (m, 3 H), 4.84–4.89 (m, 1 H), 1.94 (s, 2 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.0, 155.3, 132.6, 130.7, 129.5, 129.3, 126.7, 126.2 (q, *J* = 280.0 Hz), 122.7, 52.6 (q, *J* = 32.0 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ = –75.8. HRMS (TOF MS EI⁺) *m/z*: calcd for [C₁₂H₉N₄F₃S] 298.0500, found 298.0510.

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (no. 21102071) and the Fundamental Research Funds for the Central Universities (no. 1107020522 and no. 1082020502). The Jiangsu 333 program (for Pan) and Changzhou Jin-Feng-Huang program (for Han) are also acknowledged.

Notes and references

- (a) R. Hili and A. K. Yudin, Nat. Chem. Biol., 2006, 2, 284– 287; (b) J. C. Lewis, R. G. Bergman and J. A. Ellman, Acc. Chem. Res., 2008, 41, 1013–1025; (c) R. W. DeSimone, K. S. Currie, S. A. Mitchell, J. W. Darrow and D. A. Pippin, Comb. Chem. High Throughput Screening, 2004, 7, 473– 494.
- 2 (a) M. S. Karthikeyan, Eur. J. Med. Chem., 2009, 44, 827–833; (b) P. Roy, Y. Leblanc, R. G. Ball, C. Brideau, C. C. Chan, N. Chauret, W. Cromlish, D. Ethier, J. Y. Gauthier, R. Gordon, G. Greig, J. Guay, S. Kargman, C. K. Lau, G. O'Neil, J. Silva, M. Thérien, C. van Staden, E. Wong, L. Xu and P. Prasit, *Bioorg. Med. Chem. Lett.*, 1997, 7, 57–62; (c) S. Demirayak, G. Zitouni, P. Chevallet, K. Erol and F. S. Kilic, Farmaco, 1993, 48, 707–712.
- 3 (a) B. Berk, G. Aktay, E. Yesilada and M. Ertan, *Pharmazie*, 2001, 56, 613–616; (b) B. S. Holla, K. N. Poojary, B. Kalluraya and P. V. Gowda, *Farmaco*, 1996, 51, 793–799.
- 4 (a) D. D. J. Cartwright, B. A. J. Clark and H. McNab, J. Chem. Soc., Perkin Trans. 1, 2001, 424–428; (b) H. A. H. El-Sherif, A. M. Mahmoud, A. A. O. Sarhan, Z. A. Hozien and O. M. A. Habib, J. Sulfur Chem., 2006, 27, 65–85.
- 5 K. Atsumi, K. Iwamatsu, A. Tamura and M. Shibahara, *Jpn. Kokai Tokkyo Koh.*, JP1992339952, 1994.
- 6 (a) R. Lesyk, O. Vladzimirska, S. Holota, L. Zaprutko and A. Gzella, *Eur. J. Med. Chem.*, 2007, 42, 641–648;
 (b) A. Davoodnia, S. Ameli and H. N. Tavakoli, *Asian J. Chem.*, 2011, 23, 3707–3709.
- 7 A. R. Katritzky, A. Pastor and M. Voronkov, *Org. Lett.*, 2000, 2, 429–431.
- 8 Z. Xie, X. Zhu, Y. Guan, D. Zhu, H. Hu, C. Lin, Y. Pan, J. Jiang and L. Wang, *Org. Biomol. Chem.*, 2013, **11**, 1390– 1398.
- 9 J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, *Chem. Rev.*, DOI: 10.1021/cr4002879.
- 10 (a) C. Isanbor and D. O'Hagan, J. Fluorine Chem., 2006, 127, 303–319; (b) J. P. Begue and D. Bonnet-Delpon, J. Fluorine Chem., 2006, 127, 992–1012; (c) K. L. Kirk, J. Fluorine Chem., 2006, 127, 1013–1029.
- 11 W. K. Hagmann, J. Med. Chem., 2008, 51, 4359-4369.
- 12 V. P. Kukhar, A. E. Sorochinsky and V. A. Soloshonok, *Future Med. Chem.*, 2009, **1**, 793-819.
- 13 (a) D. O'Hagan, J. Fluorine Chem., 2010, 131, 1071-1081;
 (b) A. E. Sorochinsky and V. A. Soloshonok, J. Fluorine Chem., 2010, 131, 127-139.
- 14 (a) J. L. Aceña, A. E. Sorochinsky and V. A. Soloshonok, Synthesis, 2012, 1591–1602; (b) K. Mikami, S. Fustero, M. Sánchez-Roselló, J. L. Aceña, V. A. Soloshonok and A. E. Sorochinsky, Synthesis, 2011, 3045–3079.
- 15 (a) H. Mei, Y. Xiong, J. Han and Y. Pan, Org. Biomol. Chem.,
 2011, 9, 1402–1406; (b) H. Mei, C. Xie, L. Wu,
 V. A. Soloshonok, J. Han and Y. Pan, Org. Biomol. Chem.,
 2013, 11, 8018–8021; (c) N. Shibata, T. Nishimine,
 N. Shibata, E. Tokunaga, K. Kawada, T. Kagawa,

A. E. Sorochinsky and V. A. Soloshonok, *Chem. Commun.*, 2012, 48, 4124–4126; (d) K. V. Turcheniuk, K. O. Poliashko, V. P. Kukhar, A. B. Rozhenko, V. A. Soloshonok and A. E. Sorochinsky, *Chem. Commun.*, 2012, 48, 11519–11521; (e) G. V. Röschenthaler, V. P. Kukhar, I. B. Kulik, M. Y. Belik, A. E. Sorochinsky, E. B. Rusanov and V. A. Soloshonok, *Tetrahedron Lett.*, 2012, 53, 539–512; (f) C. Xie, H. B. Mei, L. M. Wu, V. A. Soloshonok, J. L. Han and Y. Pan, *RSC Adv.*, 2014, 4, 4763–4768.

16 (a) M. V. Shevchuk, V. P. Kukhar, G. V. Roeschenthaler,
B. S. Bassil, K. Kawada, V. A. Soloshonok and
A. E. Sorochinsky, *RSC Adv.*, 2013, 3, 6479–6484;
(b) V. L. Truong and J. Y. Pfeiffer, *Tetrahedron Lett.*, 2009,

50, 1633–1635; (c) Y. Liu, J. Liu, Y. Huang and F. L. Qing, Chem. Commun., 2013, 49, 7492–7494; (d) N. Plobeck and D. Powell, Tetrahedron: Asymmetry, 2002, 13, 303–310;
(e) W. Jiang, C. Chen, D. Marinkovic, J. A. Tran, C. W. Chen, L. M. Arellano, N. S. White and F. C. Tucci, J. Org. Chem., 2005, 70, 8924–8931; (f) H. Zhang, Y. Li, W. Xu, W. Zheng, P. Zhou and Z. Sun, Org. Biomol. Chem., 2011, 9, 6502–6505.

- 17 For the large scale synthesis, see: H. Mimura, K. Kawada, T. Yamashita, T. Sakamoto and Y. Kikugawa, *J. Fluorine Chem.*, 2010, 131, 477–486.
- 18 M. T. Robak, M. A. Herbage and J. A. Ellman, *Chem. Rev.*, 2010, **110**, 3600–3740.