Synthesis of Some Ethyl 3-Substituted-5-(1-hydroxyalkyl)-isoxazole-4-carboxylates from 4-Ethoxycarbonyl-3(2*H*)-furanones

Christian Deshayes, Michel Chabannet, Suzanne Gelin

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées, F-69621 Villeurbanne Cedex, France

A variety of synthetic procedures have been devised for the preparation of isoxazoles, due to their utility in organic chemistry¹. In connection with our interest in biologically active compounds related to 3,5-disubstituted isoxazole-4-carboxylic acids, we wish to describe a route to the hitherto unknown 5-(1-hydroxyalkyl) derivatives 2 from the 3(2H)-furanones 1.

The reaction of hydroxylamine with 4-ethoxycarbonyl-3(2H)-furanones (1) might be expected to afford two isomeric isoxazoles, 2 and/or 3. We have found that the reaction results in the exclusive or predominant formation of products 2; only a small amount of the isomeric compounds 3a, b, c ($\sim 5\%$) is detected in the crude reaction mixture by 1 H-N.M.R. The regiospecificity of the reaction may be rationalized by the nucleophilic addition of the N-atom of hydroxylamine to the 5-position of the furan ring leading to a ring-cleavage ring-closure rearrangement to afford compounds 2.

1,2,3	R ¹	R ²
а	CH₃	Н
b	C ₂ H ₅	Н
С	n-C ₃ H ₇	Н
d	CH ₃	CH ₃
е	C ₆ H ₅	Н
f	C ₆ H ₅	CH ₃

The electrophilic character of the C-5 carbon in 3(2H)-furanones is enhanced by the presence of the 4-ethoxycarbonyl substituent. In the case of 4-unsubstituted compounds 6a, b the rind opening occurs more slowly; about 24 h are required for the disappearance of the starting material. The reaction is not stereospecific, since a mixture of unseparable isomeric isoxazoles 7a, b and 8a, b is obtained as evidenced by their 1H -N.M.R. spectra on the basis of the methyl signals 7 .

Compounds 2 were characterized as 1,2-oxazoles (isoxazoles) by microanalyses and spectral data (I.R., ¹H-N.M.R., Table 1). The assignment of the isomeric structure is infered from ¹³C-N.M.R.

October 1984 Communications 869

Table 1. Ethyl 3-Substituted-5-(1-hydroxyalkyl)-isoxazole-4-carboxylates (2)

2	R¹	R ²	Yield [%]	b.p. [°C]/torr or m.p. [°C] (Solvent)	Molecular Formula ^a	I.R. (CHCl ₃) v [cm ⁻¹]	1 H-N.M.R. (CDCl ₃ /TMS _{int}) δ [ppm]
a	CH ₃	Н	56 ^b	125~130°/1 37° (water)	C ₈ H ₁₁ NO ₄ (185.2)	3450 1700	1.40 (t, 3H, $J = 7$ Hz); 2.45 (s, 3H); 4.2 (br., 1H exchangeable with D ₂ O); 4.36 (c, 2H, $J = 7$ Hz); 4.91 (c, 2H)
b	C_2H_5	Н	70 ⁶	115-120°/0.1	C ₉ H ₁₃ NO ₄ (199.2)	3450 1690	(q, 2H, $J = 7$ Hz); 4.91 (s, 2H) 1.29 (t, 3H, $J = 7$ Hz); 1.37 (t, 3H, $J = 7$ Hz); 2.89 (q, 2H, $J = 7$ Hz); 4.1 (br., 1H exchangeable); 4.37 (q, 2H, $J = 7$ Hz); 4.90 (s, 2H)
c	<i>n</i> -C ₃ H ₇	Н	61 ^b	125–130°/0.5	C ₁₀ H ₁₅ NO ₄ (213.2)	3450 1700	0.99 (t, 3 H, <i>J</i> = 7 Hz): 1.23–1.96 (m, 5H); 2.88 (t, 2 H, <i>J</i> = 7 Hz); 4.3 (br., 1 H exchangeable); 4.35 (q. 2 H, <i>J</i> = 7 Hz); 4.93 (s, 2 H)
đ	CH ₃	CH ₃	60	120125°/1.5	C ₉ H ₁₃ NO ₄ (199.2)	3420 1695	1.43 (t, 3H, $J = 7$ Hz); 1.61 (d, 3H, $J = 7$ Hz); 2.45 (s, 3H); 4.40 (q, 2H, $J = 7$ Hz); 4.7 (br., 1 H exchangeable); 5.29 (q, 1H, $J = 7$ Hz)
e	C ₆ H ₅	Н	80	185–190°/0.5 57° (hexane)	C ₁₃ H ₁₃ NO ₄ (247.2)	3450 1695	1.18 (t, 3 H, $J = 7$ Hz); 3.7 (br., 1H exchangeable); 4.24 (q, 2 H, $J = 7$ Hz); 4.96 (s, 2H); 7.3–7.7 (m, 5H)
f	C ₆ H ₅	CH ₃	65	175–180°/0.5	C ₁₄ H ₁₅ NO ₄ (261.3)	3420 1690	1.12 (t, 3H, $J = 7$ Hz); 1.66 (d, 3H, $J = 7$ Hz); 4.20 (q, 2H, $J = 7$ Hz); 4.4 (br., 1H exchangeable); 5.26 (q. 1H, $J = 7$ Hz); 7.3–7.6 (m, 5H)

^a The microanalyses were in satisfactory agreement with the calculated values: C \pm 0.20, H \pm 0.21, N \pm 0.36.

Table 2. Pertinent ¹³C-N.M.R. (solvent/TMS_{int}) Data of Compounds **2**, **4**, and **5**

Compound Solvent		δ [ppm]		
		C-3	C-4	C-5
2a	CDCl ₃	159.8 (q, ${}^{2}J = 7 \text{ Hz}$)	108.7	176.4ª
2e	CDCl ₃	(q, J = / HZ) 161.8	109.0	177.2
4	DMSO- d_6	161.6	109.8	$(t, {}^{2}J = 4 \text{ Hz})$ 172.7
5	DMSO-d ₆	$(q, {}^2J = 7 Hz)$ 163.2	109.7	176.7 (q, ${}^{2}J = 7 \text{ Hz}$)

^a This signal is significantly broadened by the ²*J* long range protoncarbon coupling with the methylene proton.

studies. Although ¹³C-N.M.R. spectra of isoxazoles have been reported²⁻⁵, there are no available data on the chemical shifts in isomeric 3,5-disubstituted isoxazole-4-carboxylic acids. The known isomeric acids 4 and 5 were prepared according to literature methods⁶ and examined, as model compounds, to determine the shifts of the Catoms adjacent to the O- and N-atoms, respectively, by observation of the coupled spectra. Significant differences in chemical shifts for C-3 and C-5 were observed (Table 2). The obvious similarity of the chemical shifts of compounds 2, after examination of their coupled spectra, as compared to compounds 4 and 5, establishes unambiguously their 5-(1-hydroxyalkyl) structure.

$$H_3C$$
 COOH C_6H_5 COOH N_0 CH₃

The 3(2H)-furanones $6a^8$ and $6b^9$ are prepared according to known procedures.

4-Ethoxycarbonyl-3(2H)-furanones (1):

Compounds **1a**, **c**-**f** are prepared as previously described ¹⁰. 4-Ethoxycarbonyl-5-ethyl-3(2H)-furanone (**1b**) is obtained in a similar manner; yield: 60%; b.p. 112-116°C/1 torr.

I. R. (CHCl₃): v = 1750, 1710, 1590 cm⁻¹

¹H-N.M.R. (CDCl₃/TMS_{int}): δ = 1.27 (t, 3H, J = 7 Hz); 1.33 (t, 3H, J = 7 Hz); 3.05 (q, 2H, J = 7 Hz); 4.30 (q, 2H, J = 7 Hz); 4.62 ppm (s, 2H).

3-Substituted 4-Ethoxycarbonyl-5-(1-hydroxyalkyl)-isoxazoles (2); General Procedure:

To a solution of a compound 1 (50 mmol) in ethanol (25 ml) is added a solution of hydroxylamine hydrochloride (4 g, 57.5 mmol) and sodium acetate (4.7 g, 57.5 mmol) in water (20 ml). After refluxing for 1 h, ethanol is evaporated under reduced pressure. Water (50 ml) is added to the residue and the mixture is extracted with ether (3 \times 50 ml). The ethereal solution is dried with sodium sulfate and ether is removed. Distillation of the residue affords either product 2a, b, c containing \sim 5% of 3a, b, c or the pure product 2d, e, f, respectively.

In the cases **a**, **b**, **c**, the mixture 2 + 3 (1.2 g) is chromatographed through a column (20 mm \times 30 cm) of silica gel (50 g) using ether as eluent. Compound 3 is eluted first, and the pure compound 2 in the 100–140 ml fraction (2a, 1.04 g; 2b, 1.0 g; 2c, 0.90 g).

5-(1-Hydroxyalkyl)-3-methyl-isoxazoles (7) and 3-(1-Hydroxyalkyl)-5-methyl-isoxazoles (8):

Compounds 6a or 6b (10 mmol) are treated as described above for compounds 1, the reflux time being extended to 24 h. The residue obtained on evaporation (containing 7a + 8a or 7b + 8b) is chromatographed through a column (20 mm \times 30 cm) of silica gel (50 g) using ether as eluent.

Products	Fraction collected	Yield
7a + 8a	$170 \rightarrow 290 \text{ ml}$	0.27 g (24%)
7b + 8b	$130 \rightarrow 240 \text{ ml}$	0.76 g (60%)

b Yield of isolated pure product after column chromatography.

Compounds 7a + 8a:

I. R. (CCl₄): v = 3610, 3380, 1610 cm⁻¹

¹H-N.M.R. (CDCl₃/TMS_{int}): δ = 2.29 (s, 1.05 H, CH₃ of **7a**); 2.43 (s, 1.95 H, CH₃ of **8a**); 4.20 (br., 1 H exchangeable with D₂O); 4.71 (s, 2H); 6.13 ppm (s, 1 H).

Compounds 7b + 8b:

1. R. (CCl₄): v = 3610, 3380, 1610 cm⁻¹

¹H-N.M.R. (CDCl₃/TMS_{in1}): δ = 1.50 (d. 1.2 H, J = 7 Hz, CHOH—CH₃ of **8b**); 1.55 (d. 1.8 H, J = 7 Hz, CHOH—CH₃ of **7b**); 2.23 (s. 1.8 H, 3-CH₃ of **7b**); 2.41 (s. 1.2 H, 5-CH₃ of **8b**); 4.45 (br., 1 H exchangeable with D₂O); 4.98 (q. 1 H, J = 7 Hz); 6.06 ppm (s. 1 H).

Received: October 17, 1983 (Revised form: February 8, 1984)

¹ B.J. Wakefield, D.J. Wright, Adv. Heterocyclic Chem. **25**, 147 (1979).

² I. Yavari, S. Esfandiari, A. J. Mostashari, P. W. W. Hunter, *J. Org. Chem.* **40**, 2880 (1975).

³ J. Gainer, G. A. Howarth, W. Hoyle, S. M. Roberts, *Org. Magn. Reson.* **8**, 226 (1976).

⁴ A.L. Baumstark, D.R. Chrisope, R.A. Keel, D.W. Boykin, *J. Heterocyclic Chem.* **17**, 1719 (1980); and references cited herein.

⁵ D.R. Chrisope, R.A. Keel, A.L. Baumstark, D.W. Boykin, J. Heterocyclic Chem. 18, 795 (1981).

⁶ A.E. Hydorn, F.A. McGinn, J.R. Moetz, J. Schwartz, J. Org. Chem. 27, 4305 (1962).

⁷ S. Clementi et al., *J. Chem. Soc. Perkin Trans. 2* **1974**, 399; and references cited therein.

⁸ A. Hofmann, W. v. Philipsborn, C. H. Eugster, *Helv. Chim. Acta* 48, 1322 (1965).

⁹ C. Venturello, R. D'Aloisio, Synthesis 1977, 754.

¹⁰ S. Gelin, M. Chabannet, Synthesis 1978, 448.