
by Edouard Demole and Paul Enggist

Firmenich SA, Research Laboratories, CH-1211 Geneva 8

Dedicated to Prof. Edgar Lederer on the occasion of his 75th birthday

Summary

Fourteen sesquiterpene ketones D-Q pertaining to the valencane (D-J) and eudesmane (K-Q) groups have been identified for the first time in grapefruit juice flavor. These novel grapefruit constituents, which include the six new compounds I, J, L, M, N and O, were identified by direct comparison with synthetic samples. Organoleptically, their total contribution to grapefruit flavor is not negligible. In particular, (+)-8,9-didehydronootkatone (E) has a powerful flavor with good grapefruit juice character.

We have previously shown that 1-p-menthene-8-thiol (A) is an extremely powerful character-impact constituent which occurs at or below the ppb-level in grapefruit juice [1]. Another specific part of grapefruit flavor may be due to (+)-nootkatone (B) [2] but, besides this ketone, other unknown constituents possibly related to it seem also to contribute significantly to the overall grapefruit aroma. This was clearly suggested by the observation that the mother liquor from which natural (+)-nootkatone (B) is crystallized has better grapefruit-like character than pure B [5]. We have now confirmed this assumption by identifying the ses-

1) The numbering system [3] in formula B will be applied to all valencane- and eudesmane-type compounds throughout this paper. Systematic names of ketones I-O and 1-8 are given in the Exper. Part.

2) Despite the fact that (+)-nootkatone (B) is usually considered as the primary flavor-impact compound in grapefruit, the true flavoring importance of this ketone has recently been questioned [4].
quiterpene ketones D–Q (Scheme 1) for the first time in grapefruit juice flavor, together with the known representatives B and (+)-1,10-dihydronootkatone (C)\(^3\) [6] [7]. Among these ketones, (+)-8,9-didehydrooootkatone (E) [2c] displays a particularly valuable grapefruit aroma similar to, but definitely stronger than that of (+)-nootkatone (B) itself.

Scheme 1. Newly identified valencane- (D–J) and eudesmane-type (K–Q) ketones in grapefruit juice flavor (The natural enantiomers are shown, with the possible exception of O (see Section 4))

1. Preparation and fractionation of the volatile flavor of grapefruit juice. – The volatile flavor was prepared and preseparated by silica gel chromatography as previously described [1]. Distillation of the more polar constituents (Fr. 4 + 5, 2.33 g) gave three subfractions, (4 + 5)a–c, the least volatile of which ((4 + 5)c, b.p. > 70°/0.001 Torr, 0.550 g) was further separated along the lines of Scheme 2 (see also Exper. Part). The individual sesquiterpene ketones B–Q thus isolated, together with many other components\(^4\), were characterized by their mass spectra (all compounds), \(^1\)H-NMR spectra (C, H, I, J, L, N, O, Q), and \(t_R\) upon capillary GC. Their

\(^3\) (+)-1,10-Dihydronootkatone (C), a photoreduction product of (+)-nootkatone (B) [6], was formerly identified in grapefruit flavor by Dr. A.F. Thomas (Firmenich SA, Geneva, personal communication).

\(^4\) According to its \(^1\)H-NMR spectrum, a compound isolated from these mixtures could be paradisiol (R, of 4-epi-intermedeol) [8], this agreeing with earlier findings [9]. Configurationally, R is ideally suited as a biosynthetic precursor for valencane-type sesquiterpenes [8], and its in vivo rearrangement to valencene (S) has been demonstrated to occur in grapefruit [9].
The specific rotation of (+)-nootkatone (B, \(t_R = 1.00\)) is listed in the Table. As very small amounts of these natural ketones were available, specific rotation data could be obtained only for the relatively abundant representative N (Sect. 3.4).

Scheme 2. Isolation of sesquiterpene ketones B-Q from subfraction (4+5)c of the volatile flavor of grapefruit juice

![Diagram of Scheme 2]

Table. \(t_R\) of ketones C-Q relative to (+)-nootkatone (B). Conditions: 50 m \(\times\) 0.3 mm glass capillary column, UCON HB 50 5100, 180°, isothermal

<table>
<thead>
<tr>
<th>Ketone</th>
<th>(t_R)</th>
<th>Ketone</th>
<th>(t_R)</th>
<th>Ketone</th>
<th>(t_R)</th>
<th>Ketone</th>
<th>(t_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.71</td>
<td>N</td>
<td>0.76</td>
<td>K</td>
<td>0.96</td>
<td>F</td>
<td>1.07</td>
</tr>
<tr>
<td>D</td>
<td>0.724</td>
<td>Q</td>
<td>0.78</td>
<td>B</td>
<td>1.00</td>
<td>H</td>
<td>1.59</td>
</tr>
<tr>
<td>P</td>
<td>0.727</td>
<td>O</td>
<td>0.86</td>
<td>M</td>
<td>1.04</td>
<td>J</td>
<td>2.15</td>
</tr>
<tr>
<td>G</td>
<td>0.73</td>
<td>L</td>
<td>0.87</td>
<td>E</td>
<td>1.05</td>
<td>I</td>
<td>2.19</td>
</tr>
</tbody>
</table>

2. Identification of valencane-type ketones C-J. - The known representatives C \({}^3\) [6] [7], D [7], E [2c], F (α-vetivone) [7] [10], G [10b], and H [2c] were synthesized from (+)-nootkatone (B) according to literature procedures, and compared directly with the natural ketones isolated by GC (Scheme 2).

The novel diketone I (m.p. 72°; \([\alpha]_D^{20} = +45° (c = 1.29, \text{CHCl}_3)\) was obtained, together with hydroxyenone J \(^5\), by oxidation of (+)-nootkatone enolate with \(^3\text{O}_2\) [11] (Scheme 3).

\(^5\) Hydroxyenone I slowly isomerized to 2 during silica gel chromatography (see Exper. Part).
The structure of I was ascertained by its 1H-NMR spectrum showing expected signals at 1.05 (d, $J = 6$, H$_3$C–C(4)); 1.11 (s, H$_3$C–C(5)); 1.51 (t, $J = 13$, H$_ax$–C(6)); 1.78 (s, H$_3$C–C(11)); 2.11 (d×t, $J_1 = 13$, $J_2 = 3$, H$_ax$–C(6)); 2.25 (m, H$_ax$–C(4), collapsing to a d×d, $J_1 = 10$, $J_2 = 7$, upon H$_3$C–C(4) decoupling); 4.80 and 4.85 (s and narrow m, resp., H$_2$C=C(I 1)); 6.27 (s, H–C(1)).

Diketone J (m.p. 61°; [a]$_D^{20} = +30°$ (c = 0.75, CHCl$_3$)) was in turn prepared by conjugate reduction of I using TiCl$_3$ [12]. According to 1H-NMR data, this compound has an equatorial H$_3$C–C(4) (H$_ax$–C(4) at 1.94 (d×d, $J_1 = 12$, $J_2 = 6$, after H$_3$C–C(4) decoupling)), an equatorial isopropenyl group (H–C(7) at 2.62 (t×t, $J_1 = 13$, $J_2 = 4$)), and trans-fused rings (H$_3$C–C(5) at 0.90 vs. 0.94 in the case of C [6] [7]).

While both synthetic diketones I and J proved to be identical with their natural counterparts (MS, 1H-NMR), the formation of the former via oxidation of (+)-nootkatone (B) enolate (Scheme 3) might constitute a biomimetic process. If so, hydroxyenones 1 and/or 2 could occur naturally in grapefruit or other Citrus species.

3. Identification of eudesmane-type ketones K–N and P–Q6). We identified (+)-α-cyperone (P) and (-)-10-epi-α-cyperone (Q) by direct comparison (MS: P, Q; 1H-NMR: Q) with authentic samples prepared from (-)-2-carone [13] and (+)-dihydrocarvone [14], respectively. The less familiar ketones K–N (of which diastereoisomers L, M and N are novel compounds) were in turn synthesized from P and Q, using a regioselective 1,2-carbonyl transposition developed by Nakai & Mimura [15] and based on the Shapiro reaction [16] (Scheme 4). Contrary to published results [15a], however, this transposition reaction did not proceed stereoselectively when applied to (+)-α-cyperone (P), but afforded nearly equal amounts of ketones K and L. A better stereoselectivity was attained in the case of (-)-10-epi-α-cyperone (Q), from which the hydronaphthalones M and N were produced in a 1:3 to 1:4 ratio probably reflecting the destabilizing effect of the axial isopropenyl group in M. The assignment of cis or trans ring fusion in the hydronaphthalones K–N is based upon the 1H-NMR data.

6) This group includes genuine eudesmane-type compounds (K, P), as well as 5- and/or 10-epi-eudesmane derivatives (L, M, N, O, Q).
Scheme 4. Regioselective 1,2-carbonyl transposition of (+)-a-cyperone (P) and (-)-10-epi-a-cyperone (Q) according to Mimura & Nakai [15]

\[\text{P} \xrightarrow{\text{H}_3\text{CS}} \text{3a} (55\%) \]
\[\text{Q} \xrightarrow{\text{H}_3\text{CS}} \text{3b} (35\%) \]

\[\text{a)} \text{TsNHNH}_2; \text{BuLi/(CH}_3)_2\text{NCH}_2\text{CH}_2\text{N(CH}_3)_2, -78^\circ; \text{CH}_3\text{SSCH}_3, -78-0^\circ; \text{BuLi, -78}; \text{room temp., then H}_2\text{O}; \text{b)} \text{HgCl}_2/\text{H}_2\text{O}. \]

3.1. Ketone K (\([\alpha]_D^0 = +109^\circ \) (e = 0.45, CHCl_3)). According to its \(^1\)H-NMR spectrum\(^1\), this diastereoisomer has an equatorial isopropenyl group (H–C(7) at 2.07 ppm, \(t \times t\), \(J_1 = 12, J_2 = 3.5\) Hz) and \(\text{trans}\)-fused rings, the latter point being demonstrated by the appearance of H–C(5) at 2.40 ppm as a \(d\times m\) with \(J_1 = 13\) Hz (ax,ax), a coupling pattern clearly incompatible with the alternative \(\text{cis}\)-structure L. Confirming this assignment, H–C(10) appears at 0.80 ppm\(^7\) in the spectrum of perhydronaphthalene 4 resulting from conjugate reduction of K.

3.2. Ketone L (m.p. 38\(^\circ\); \([\alpha]_D^0 = -61^\circ \) (e = 0.87, CHCl_3)). In the \(^1\)H-NMR spectrum\(^1\) of this \(\text{cis}\)-hydronaphthalenone ('steroid-like' conformation with equatorial isopropenyl group), H–C(5) should appear as a \(t \times t\) with estimated \(J_1 = 3-4\) (eq,ax and eq,eq couplings to H_2C(6)), and \(J_2 = 1-2\) Hz (allylic coupling to H–C(3) and long-range 'W' coupling to H_eq-C(9)). Such a signal indeed occurs at 2.34 ppm as a narrow, unresolved \(m\) having adequate \(W_{1,2} \approx 10\) Hz. The \(\text{cis}\) ring fusion in L is further indicated by the H_3C-C(10) \(s\) at 1.13 ppm\(^7\) in the spectrum of the derived perhydronaphthalene 5.

3.3. Ketone M (\([\alpha]_D^0 = -70^\circ \) (e = 0.64, CHCl_3)). The whole configuration of this diastereoisomer can be directly deduced from the \(^1\)H-NMR signal of H_ax–C(6), which appears at 1.56 ppm as a \(d \times t\) arising from geminal \(J = 14\), ax,ax \(J = 14\), and ax,eq \(J = 5\) Hz couplings. This signal, collapsing to a \(d\) \(J = 15\) Hz after H–C(5) and H–C(7) double decoupling, is fully specific for the \(\text{trans}\)-hydronaphthalenone structure M with axial isopropenyl group. This assignment further agrees with the position at 0.83 ppm\(^7\) of the H_3C-C(10) \(s\) in the spectrum of the related perhydronaphthalene 6.

\[\text{4} \]
\[\text{5} \]
\[\text{6} \]
\[\text{7a} \]
\[\text{7b} \]

\(^7\) In \(\text{cis}/\text{trans}\)-pairs of angularly methylated hydronaphthalenones, usually \(\delta(\text{CH}_3; \text{cis}) > \delta(\text{CH}_3; \text{trans})\). This holds for 4a-methyl-perhydronaphthalen-1-one (\(\delta(\text{CH}_3; \text{cis}/\text{trans}) = 1.05/0.80\) \([17]\), 4a-methyl-perhydronaphthalen-2-one (1.19/1.04) \([18]\), 8a-methyl-perhydronaphthalen-1-one (1.18/1.08) \([19]\), and 8a-methyl-perhydronaphthalen-2-one (0.97/0.79) \([20]\) (a case directly relevant to the present work).
3.4. Ketone N ($\left[\alpha\right]_D^{19} = +128^\circ (c = 0.60, \text{CHCl}_3)$). As in the case of ketone M, the whole configuration of this diastereoisomer is directly deducible from the 1H-NMR signal of H_{ax}-$\text{C}(6)$. Indeed, this proton appears at 1.16 ppm as a qa with $J = 13$ Hz (geminal coupling, ax,ax couplings to $\text{H}-\text{C}(5)$ and $\text{H}-\text{C}(7)$), and such a multiplicity can be reconciled only with the cis-hydronaphthalenone structure N (as stable conformer with equatorial isopropenyl group). This assignment is further confirmed by the $\text{H}_3\text{C}-\text{C}(10)$ signals appearing at 0.95 ppm7 and 1.05 ppm7 in the spectra of the respective perhydro-naphthalenones 7a and 7b, both produced by conjugate reduction of N.

Synthetic ketones K–N proved to be identical with their natural counterparts (MS, t_R, 1H-NMR for L and N). Moreover, the specific rotation ($\left[\alpha\right]_D^{19} = +133^\circ (c = 0.15, \text{CHCl}_3$)) of natural N, which for once could be measured8), agrees well with that of synthetic material (+128$^\circ$). This confirms the isopropenyl group to be β-oriented ($(7\, R)$-configuration) in natural N, as generally observed in eudesmane-type sesquiterpenes. We consequently also assign the $(7\, R)$-configuration to the other natural ketones (K–M) of this series, despite the fact that no specific rotation data are available for them. Interestingly enough, ketone K represents an alternative structure previously proposed for (\mp)-nootkatone (B)$^{[2a][2c]}$.

4. Ketone O (m.p. 92$^\circ$; $\left[\alpha\right]_D^{19} = +83^\circ (c = 0.82, \text{CHCl}_3$)). – cis-Hydronaphthalenone O resulted from acid-catalyzed isomerization of either ketones N or M, the latter apparently undergoing conversion to the more stable cis-isomer N prior to double-bond rearrangement (see Exper. Part). The planar structure of O was ascertained by its 1H-NMR spectrum, and its cis ring fusion by the 1H-NMR data of its perhydro-naphthalenone derivatives 8a and 8b, obtained as ca. 1:1 mixture by successive lithium-ammonia reduction and hydrogenation (Pt/H$_2$) of O.

The four methyl signals of O appear at 0.97 ($\text{H}_3\text{C}-\text{C}(10)$), 1.69 and 1.71 ($2\text{H}_3\text{C}-\text{C}(11)$), and 1.98 ppm ($\text{H}_3\text{C}-\text{C}(4)$), and $\text{H}-\text{C}(3)$ at 5.83 ppm1). In the 1H-NMR spectrum of 8a, $\text{H}-\text{C}(4)$ gives rise to a $d\times t$ due to one ax,ax ($J = 12$ Hz) and two ax,eq ($J = 5$ Hz) couplings, a result consistent only with the cis structure 8a. The cis ring fusion in ketone O is further confirmed by the $\text{H}_3\text{C}-\text{C}(10)$ signals appearing at 0.927 and 1.03 ppm7 for 8a and 8b, respectively.

Synthetic and natural ketone O had identical t_R, mass and 1H-NMR spectra. However, the absolute configuration of the natural representative remains unsettled, as no specific rotation data are available for this compound which can be related to either L or N in grapefruit.

$^8)$ Ketone N is the major diastereoisomer occurring in volatile grapefruit juice flavor, which contains 0.05, 0.06, 0.07, and 0.29% of ketones K, L, M, and N, respectively.
Experimental Part

General remarks. See [1]. The m.p. are uncorrected. Because all mass spectra were obtained by GC/MS coupling, the relative peak intensities indicated may differ somewhat from those measured under ordinary, static conditions.

1. Fractionation of volatile grapefruit flavor (Scheme 2). - Fractions 4 and 5 (total 2.33 g) resulting from silica gel chromatography of crude volatile grapefruit flavor [1] were combined and distilled to afford subfractions (4+5)a (b.p. 70–88°/10 Torr, 1.51 g), (4+5)b (b.p. 50–70°/0.001 Torr, 0.26 g), and (4+5)c (b.p. > 70°/0.001 Torr, 0.55 g). Chromatography of the latter on silica gel (11 g) using successively hexane, Et₂O, and Et₂O/MeOH 85:15 gave further subfractions (4+5)c/a (10 mg), (4+5)c/b (357 mg), and (4+5)c/c (78 mg). While the first of these could be examined directly by GC, the last one was discarded, and the major subfraction (4+5)c/b was rechromatographed on alumina (13 g, activity II). Successive elution with hexane, Et₂O, and MeOH yielded the ultimate subfractions (4+5)c/b/1 to -4, which were then subjected to semiprep. GC. Final identification of ketones B–Q, as well as proper monitoring of the whole separation process, were efficiently ensured by GC/MS coupling (50 m x 0.3 mm glass capillary column coated with UCON HB 50 5100, temp. programmed from 140 up to 180° at +2.5°/min).

2. Valencane-type ketones C–J. - 2.1. MS of ketones C–H. (+)-1,10-Dihydrooootkatone (C)

(-)-(−)-β-γ-Nootkatone (D) [7]: 218 (2, M⁺, C₁₅H₂₂O), 203 (9), 177 (28), 133 (45), 107 (43), 105 (100), 93 (56), 91 (63), 80 (60), 41 (63).

(+)-(+)-8,9-Didehydrooootkatone (E) [2c]: 216 (74, M⁺, C₁₅H₂₀O), 201 (9), 174 (45), 159 (59), 145 (77), 131 (100), 105 (39), 91 (70), 77 (43), 41 (75), 39 (47).

(−)-(−)-α-Vetivone (F) [7] [10]: 218 (44, M⁺, C₁₅H₂₂O), 203 (20), 185 (100), 147 (37), 121 (44), 105 (37), 91 (45), 55 (39), 41 (64).

(+)-1,10-Dihydro-α-vetivone (G) [10b]: 220 (45, M⁺, C₁₅H₂₄O), 205 (6), 135 (62), 107 (52), 93 (50), 83 (100), 69 (40), 67 (48), 55 (60), 41 (69).

(+)-8,9-Didehydro-α-vetivone (H) [2c]: 216 (63, M⁺, C₁₅H₂₀O), 201 (2), 174 (32), 159 (100), 131 (30), 119 (30), 91 (35), 41 (34).

2.2. (+)-(3S,4aS,5R)-3-Isopropenyl-4a,5-dimethyl-2,3,4,4a,5,6-hexahydro-1,7-naphthoquinone (I), (+)-(4R,4aS,6R)-2-hydroxy-6-isopropenyl-4a,5-dimethyl-4,5,6,7-tetrahydro-1(4H)-naphthalenone (I) and (+)-(4R,4aS,6S)-1-hydroxy-6-isopropenyl-4a,5-dimethyl-4,5,6,7-tetrahydro-2(3H)-naphthalenone (2). A mixture of K₂BuO (11.81 g, 105 mmol), anhydrous r-BuOH, and 1,2-dimethoxyethane (DME, 192 ml) was stirred for 10 min at −20° under O₂ when (+)-nootkatone (B, 10.00 g, 45.8 mmol) in DME (10 ml) was added dropwise to the solution within 20 min [11]. After 1½ h further stirring with simultaneous warming to room temp. (total O₂ uptake about 1 l), the mixture was diluted with H₂O (400 ml) and extracted twice with Et₂O. Usual treatment of the combined org. layers (washing to neutrality, drying over MgSO₄, concentration) afforded 7.53 g of crude product containing 30% of unreacted B, 38% of I, and 27% of I (conversion yield 24%; capillary GC, UCON HB 50 5100, 180°, 50 m x 0.3 mm glass capillary column). Chromatography of this mixture on silica gel (226 g) gave pure I (1.05 g, eluted with hexane/EtOAc 94:6 to 90:10), B (2.22 g, hexane/EtOAc 90:10 to 80:20), I (2.60 g, hexane/ EtOAc 80:20 to 75:25), and miscellaneous intermediate fractions. During this separation, some 2 was produced⁹) by isomerization of I, thus requiring I to be further purified by successive chromatography on alumina (25 parts, activity III, hexane/ Et₂O 9:1 to 1:1) and recrystallization from pentane.

Data of I. M.p. 71–72.5°, [α]D⁻⁰ = +45.7° (c = 1.29, CHCl₃). - IR (CHCl₃): 1690, 1675, 1660, 1235. - ¹H-NMR: see General Part. - MS: 232 (40, M⁺, C₁₅H₂₀O₂), 148 (92), 147 (98), 135 (100), 93 (82), 91 (85), 79 (81), 77 (85), 66 (96), 41 (80).

Data of 1. M.p. 88.5–89.5°, [α]D⁻⁰ = −37° (c = 1.27, CHCl₃). - IR (CHCl₃): 1225, 1615, 1650, 1660, 1415, 1280, 3450. - ¹H-NMR: 1.07 (s, H₃C–C(S)); 1.12 (d, J = 7.5, H₃C–C(4)); 1.40 (t, J = 12.5,

⁹) Apparently in the form of dimeric or polymeric material, m.p. 166–167.5°, which underwent thermal depolymerization to 2 upon GC (silicone oil 5%, 260°, 5 x 0.004 m column).
H$_{18}$-C(6)); 1.77 (s, H$_{3}$C-C(11)); 1.91 (d x t, J$_1$ = 12.5, J$_2$ = 2, H$_{30}$-C(6)); 2.10 (d x d x d, J$_1$ = 18, J$_2$ = 11, J$_3$ = 2, H$_{31}$-C(8)); 2.30 (ca. t x t, J$_1$ = 12, J$_2$ = 5, H-C(7)); 2.39 (d x d x t, J$_1$ = 18, J$_2$ = 2, J$_3$ = 5, H$_{32}$-C(8)); 2.59 (d x q x a, J$_1$ = 2.5, J$_2$ = 7.5, H-C(4)); 4.78, 4.82 (s and narrow m, resp., H$_{3}$C-C(11)); 5.77 (d, J = 2.5, H-C(3)); 6.11 (s, HOC-C(2)); 6.90 (d x d, J$_1$ = 5, J$_2$ = 2, H-C(9)). - MS: 232 (7, M$^+$, C$_{15}$H$_{20}$O$_2$), 189 (12), 164 (100), 93 (12), 91 (13), 69 (29), 41 (15).

Data of 2 (sample isolated by semi-prep. GC (s. footnote 9). M.p: 65-67°, [a]$_D^{19}$ = +193.4° (c = 1.22, CHCl$_3$). - 1H-NMR): 0.99 (d, J = 7.5, H$_{3}$C-C(4)); 1.06 (s, H$_{3}$C-C(5)); 1.28 (t, J = 12.5, H$_{3}$C-C(6)); 1.75 (s, H$_{3}$C-C(11)); 1.95 (d x d x d, J$_1$ = 12.5, J$_2$ = 5, J$_3$ = 1.5, H$_{30}$q-C(6)); 2.06 (d x d x q x a, J$_1$ = 13, J$_2$ = 6, J$_3$ = 7.5, H-C(4)); 2.47 (m, 2, H-C(3)); 3.03 (d x m, J$_1$ = 13, H-C(7)); 4.83 (narrow m, H$_{3}$C-C(11)); 6.03 (d x m, J$_1$ = 10, H-C(8)); 6.72 (d x d, J$_1$ = 10, J$_2$ = 3.5, H-C(9)). - MS: 232 (100, M$^+$, C$_{15}$H$_{20}$O$_2$), 217 (22), 203 (46), 161 (42), 147 (30), 105 (36), 91 (54), 77 (34), 41 (40).

2.3. (+)-(3S,4aS,5R,8aS)-3-Isopropenyl-4a,5-dimethyl-perhydro-l,7-naphthoquinone (J). TiCl$_3$ (262 mg, 1.70 mmol, 15% aq. solution) was quickly added at 20° under N$_2$ to a stirred solution of (+)-α-cyperone tosylhydrazone (6.05 g, 31.5 ml) was stirred for 2 h at 40° under N$_2$ and then concentrated to dryness at 10 Torr in the presence of toluene to ensure total, azeotropic removal of H$_2$O. The combined org. layers, carefully washed (N$_2$ evolution). the mixture was poured at -50° into 10% NH$_4$Cl solution and extracted with Et$_2$O (3 times). The crude extract was chromatographed on silica gel (9: 1 (78.5 g) with hexane/Et$_2$O 98: 2 to 70: 30, were finally purified by recrystallization in pentane/Et$_2$O, 99:1 to 65:35 as eluent, affording 129 mg (66%) of (+)-(3S,4aS,5R,8aS)-3-Isopropenyl-4a,5-dimethyl-perhydro-l,7-naphthoquinone (J).

1H-NMR): 0.90 (s, H$_{3}$C-C(5)); 0.97 (d, J = 6.5, H$_{3}$C-C(4)); 1.45 (t, J = 13, H$_{3}$C-C(6)); 1.76 (s, H$_{3}$C-C(11)); 1.94 (d x d x q x a, J$_1$ = 12, J$_2$ = 6, J$_3$ = 6.5, H-C(4)); 2.06 (d x m, J$_1$ = 13, H$_{30}$q-C(6)); 2.15-2.54 (m, 7 H, 2 H-C(1), 2 H-C(3), 2 H-C(8), H-C(10)); 2.62. (t x t, J$_1$ = 13, J$_2$ = 4, H-C(7)); 4.79, 4.82 (s and narrow m, resp., H$_{3}$C-C(11)); - MS: 234 (49, M$^+$, C$_{15}$H$_{22}$O$_2$), 217 (22), 203 (46), 161 (42), 147 (30), 105 (36), 91 (54), 77 (34), 41 (40).

3. Eudesmane-type ketones K-Q6). - 3.1. (+)-(4aR,6R,8aS)- and (-)-(4aS,6R,8aS)-6-Isopropenyl-4,8a-dimethyl-4a,5,6,7,8,8a-hexahydro-2(1H)-naphthalenone (K and L) [15]. A mixture of (+)-α-cyperone [13] (P, 4.61 g, 21 mmol; [a]$_D^{19}$ = +76° (c = 0.33, CHCl$_3$)) and tosylhydrazine (5.10 g, 21 mmol; CH$_3$CN (39 ml) and H$_2$O (13 ml) was added dropwise during 10 min at 20° under N$_2$ to a stirred mixture of (+)-α-cyperone tosylhydrazone (6.05 g, 15 mmol), anh. tetrahydrofuran (THF, 180 ml) and N,N,N',N'-tetramethylenediamine (TMEDA, 90 ml). After 10 min further stirring at -30°, dimethyl disulfide (1.34 ml, 15 mmol) was added during 5 min at -78°. The mixture was allowed to warm to 0°, kept for 15-20 min at this temp., and cooled again to -78°, when BuLi (14.9 mmol, 9.55 ml of 10% hexane solution) was added within 13 min. After 2 h stirring at room temp. (N$_2$ evolution), the mixture was poured at 0° into 10% NH$_4$Cl solution and extracted with Et$_2$O (3 times). The combined org. layers, carefully washed to neutrality and worked up as usual, afforded 4.40 g of crude 3-Isopropenyl-5,8a-dimethyl-7-methylthio-1,2,3,4,8,8a-hexahydronaphthalene (3a). Distillation at 99°/0.01 Torr gave 2.04 g (55%). - IR: 890, 1435, 1450, 1370, 1635, 1350, 1570. - 1H-NMR: 0.91 (s, 3 H); 1.72 (d, J = 2, 3 H); 1.76 (s, 3 H); 2.28 (s, 3 H); 2.60 (d x t, J$_1$ = 14, J$_2$ = 2.5, 1 H); 4.74 (narrow m, 2 H); 5.39 (d, J = 2.5, 1 H).

A mixture of 3a (2.04 g, 8.2 mmol), CH$_3$CN (39 ml) and H$_2$O (13 ml) was added dropwise during 10 min at 20° under N$_2$ to a stirred mixture of HgCl$_2$ (6.69 g, 24.6 mmol) in CH$_3$CN (37 ml) and H$_2$O (12 ml) [21]. After 1 1/2 h further stirring at 60°, the mixture was extracted with Et$_2$O (3 times) and the combined org. layers washed with sat. NaHCO$_3$ solution (4 times) and H$_2$O (3 times). The pentane-soluble part (1.57 g, 21% of 2) was purified by chromatography on silica gel/AgNO$_3$ 9:1 (78.5 g) with hexane/Et$_2$O 98:2 to 70:30, were finally purified by semiprep. GC (SP-1000 100%, 250°, 2.5 x 0.004 m column).

Data of K: [a]$_D^{19}$ = +109° (c = 0.45, CHCl$_3$). - IR: 1655, 1370, 1430, 1610, 880. - 1H-NMR): 0.90 (s, H$_{3}$C-C(10)); 1.32 (qa, J = 13, H$_{30}$q-C(6)); 1.40-1.70 (m, 4 H, 2 H-C(8), 2 H-C(9)); 1.77 (s, H$_{3}$C-C(11)); 1.91 (narrow m, H$_{3}$C-C(4)); 2.07 (t x t, J$_1$ = 12, J$_2$ = 3.5, H-C(7)); 2.20, 2.29 (AB, J = 16,
2 H—C(1)); 2.40 (d×m, J1 = 13, H—C(5)); 4.76 (narrow m, H2C=C(11)); 5.90 (narrow m, H—C(3)).
- MS: 218 (11, M+1, C15H22O), 203 (3), 176 (26), 133 (21), 107 (16), 95 (100), 93 (20), 69 (60), 67 (34), 41 (35).

Data of L. M.p. 38°, [α]D = −61° (c = 0.87, CHCl3). - IR: 1660, 1375, 1430, 885, 1290, 1610. - 1H-NMR1): 1.11 (s, H3C—C(10)); 1.28 (m, 1 H); 1.58 (m, 3 H); 1.74 (s, H3C—C(11)); 1.85 (narrow m, 3 H); 1.95 (s, H3C—C(4)); 2.22, 2.32 (AB, J = 16, 2 H—C(1)); 2.34 (narrow m, W1/2 = 10. H—C(5)); 4.75, 4.79 (s and narrow m, resp., H2C=C(11)); 5.93 (br. s, H—C(3)). - MS: 218 (23, M+1, C15H22O), 203 (9), 123 (90), 107 (43), 95 (100), 79 (51), 69 (50), 67 (58), 41 (63).

3.2. (−)-4aS,6R,8aR)- and (+)-4aR,6R,8aR)-6-Isopropenyl-4a-dimethyl-4a,5,6,7,8,8a-hexahydro-2(H)naphthalenone (M and N). The above 1,2-carbonyl transposition sequence [15] (s. 3.1) was applied to (−)-10-epi-a-cyperone [14] (Q; [α]D = −180.5° (c = 1.12, CHCl3)) via the corresponding tosylhydrazone, m.p. 156–157° (yield 88%), and the sulfide 3b, b.p. 100°/0.1 Torr (35%). - IR: 1450, 1435, 890, 1635, 1365, 1570. - 1H-NMR: 0.94 (s, 3 H); 1.70 (s, 3 H); 1.74 (d, J = 2, 3 H); 2.28 (s, 3 H); 2.67 (d×t, J1 = 16, J2 = 2, 1 H); 4.77, 4.80 (2 br. s, 2 H); 5.37 (d, J = 2.5, 1 H).

Hydrolytic cleavage [21] of 3b produced a mixture of M and N (1:3 to 1:4, 64%), which were isolated by silica gel/AgNO3 9:1 chromatography and semiprep. GC as described for K/L.

Data of M: [α]D = −70° (c = 0.64, CHCl3). - IR: 1655, 1430, 1370, 1250, 1605, 885. - 1H-NMR1): 0.94 (s, H3C—C(10)); 1.28 (d×t, J = 13, J2 = 3.5, H3C—C(9)); 1.56 (d×t, J1 = 5, J2 = 14, H3C—C(6), partially obscured by another 1H signal); 1.78 (s, H3C—C(11)); 1.90 (narrow m, H3C—C(4)); 2.20 (m, 2 H—C(1)); 2.50 (m, H—C(5) and H—C(7)); 4.88, 4.99 (2 narrow m, H2C=C(11)); 5.88 (narrow m, H—C(3)). - MS: 218 (19, M+1, C15H22O), 203 (5), 176 (100), 175 (100), 161 (43), 147 (45), 95 (95), 93 (45), 91 (41), 69 (77), 67 (67), 55 (44), 41 (86).

Data of N: [α]D = +128° (c = 0.60, CHCl3). - IR: 1650, 1620, 1370, 1240, 1435, 885. - 1H-NMR1): 0.98 (s, H3C—C(10)); 1.16 (qa, J = 13, H3C—C(6)); 1.73 (s, H3C—C(11)); 1.83, 2.67 (AB, J = 17, 2 H—C(1)); 1.97 (d, J = 2, H2C=C(4)); 4.71, 4.73 (s and narrow m, resp., H2C=C(11)); 5.82 (s, H—C(3)). - MS: 218 (21, M+1, C13H22O), 203 (13), 123 (64), 107 (26), 95 (100), 79 (32), 69 (31), 67 (44), 41 (48).

3.3. Li/NH3 reduction of K to 4-7. General procedure [22]: liquid NH3 (30-35 ml, predried by successive addition of some Li and distillation) was placed at −50° in a 3-necked flask. A solution of any of the ketones K-N (218 mg, 1.0 mmol) and t-BuOH (86.7 mg, 1.17 mmol) in dry Et2O (10 ml) was then quickly added at −50° with stirring, followed by small pieces of Li (43 mg, 6.2 mmol). After further stirring at −50° until the blue color had disappeared (20–30 min), an excess of solid NH2Cl was added to the solution. NH3 was allowed to evaporate, Et2O and sat. NaCl solution were added. The mixture was extracted with Et2O (twice) and the combined Et2O layers washed with sat. NaCl solution (3 times) and H2O (once). The crude product resulting from usual work-up (yield of 4-7: 80–100% by capillary GC) was finally purified by chromatography on silica gel/AgNO3 9:1, microdistillation, and/or semiprep. GC (SP-1000 100°, 250°, 2.5×0.004 m column).

(4R,4aS,6R,8aS)-6-Isopropenyl-8a-dimethyl-perhydropyridophthalen-2-one (4; from reduction of K): 1H-NMR1): 0.80 (s, H3C—C(10)); 0.98 (d, J = 7, H3C—C(4)); 1.73 (after H3C—C(4) decoupling: d×t, J1 = 5, J2 = 12, H—C(4)); 1.75 (s, H3C—C(11)); 2.11 (d×d, J1 = 13, J2 = 2, H—C(1)); 2.17 (d, J = 13, H—C(1)); 2.37 (d×d×d, J1 = 14, J2 = 5, J1 = 2, H3C—C(3)); 4.72 (br. s, H2C=C(11)). - MS: 220 (100, M+1, C14H23O), 205 (37), 177 (33), 162 (37), 137 (51), 123 (45), 107 (81), 95 (86), 93 (60), 82 (68), 81 (67), 69 (73), 55 (57), 41 (67).

(4R,4aR,6R,8aR)-6-Isopropenyl-4a-dimethyl-perhydropyridophthalen-2-one (5; from reduction of L): 1H-NMR1): 1.03 (d, J = 6, H3C—C(4)); 1.13 (s, H3C—C(10)); 1.72 (s, H3C—C(11)); 2.06 (d×d, J1 = 13, J2 = 3, 1 H); 2.14 (d, J = 12, 1 H); 2.30 (d×t, J1 = 12, J2 = 3, 1 H); 2.32 (d, J = 13, 1 H); 4.70 (br. s, H2C=C(11)). - MS: 220 (18, M+1, C15H24O), 205 (75), 162 (22), 135 (48), 123 (100), 107 (55), 93 (58), 82 (47), 67 (51), 55 (63), 41 (73).

(4S,4aR,6R,8aR)-6-Isopropenyl-4a-dimethyl-perhydropyridophthalen-2-one (6; from reduction of M): 1H-NMR1): 0.83 (s, H3C—C(10)); 0.99 (d, J = 7, H3C—C(4)); 1.19 (d×t, J1 = 13, J2 = 3, 1 H); 1.29 (d×t, J1 = 5, J2 = 13, 1 H); 1.76 (s, H3C—C(11)); 1.98 (s, J = 13, H3C—C(3)); 4.86, 4.96 (2 s, H2C=C(11)). - MS: 220 (11, M+1, C15H24O), 205 (10), 162 (10), 137 (49), 123 (25), 107 (37), 95 (34), 82 (100), 69 (44), 55 (43), 41 (47).
(4S,4aR,6R,8aR)- and (4R,4aS,6R,8aR)-6-Isopropenyl-4,8a-dimethyl-perhydronaphthalen-2-one (7a and 7b; formed in a 3:1 ratio by reduction of N). 7a (major): 1H-NMR): 0.95 (s, H3-C(10)); 0.99 (d, J = 7, H3-C-C(4)); 1.27 (tq, J = 12, hex(C)-6)); 1.76 (narrow m, H3-C-C(11)); 1.95 (t × J = 11.5, J2 = 3.5, H-C(7)); 2.04–2.16 (m, 2 H-C(3)); 2.38 (after H3-C(4) decoupling: 4 × t, J = 12, J2 = 4.5, H-C(4)); 2.66 (d, J = 14, hex-C(1)); 4.73 (br, s, H3-C-C(11)). – MS: 220 (19, M+, C15H24O), 203 (56), 162 (42), 135 (34), 121 (46), 107 (81), 93 (93), 81 (64), 69 (79), 55 (85), 41 (100).

Data of 7b (minor): 1H-NMR): 1.05 (s, H3-C-C(10)); 1.17 (d, J = 7, H3-C-C(4)); 1.73 (d × t, J = 13, J2 = 1.5, hex-C(1)); 1.76 (s, H3-C-C(11)); 1.98 (t × J = 11, J2 = 3.5, H-C(7)); 2.07 (d × t, J = 14, J2 = 2. Heq-C(3)); 2.12 (after H3-C(4) decoupling: narrow m, W1/2 = 7, H-C(4)); 2.58 (d × d × d, J = 14, J2 = 7, hex-C(3)); 2.67 (d, J = 13, hex-C(1)); 4.72 (br, s, H3-C-C(11)). – MS: 220 (44, M+, C15H24O), 205 (23), 162 (20), 135 (22), 123 (100), 107 (35), 93 (41), 81 (36), 67 (41), 55 (47), 41 (51).

3.4. (±)-(4aR, 8aR)-6-Isopropylidene-4,8a-dimethyl-4a,5,6,7,8a-hexahydro-2(1H)-naphthalenone (O). a) Hydronaphthalenone N (300 mg, 1.37 mmol; [α]20 = +128° (c = 0.60, CHCl3)) and p-toluenesulfonic acid monohydrate (TsOH, 15 mg, 0.07 mmol) were stirred in toluene (3 ml) at 85° under N2. After 1 h, a further portion of TsOH (15 mg) was added and the mixture stirred again at 85°, until capillary GC (tR(I) < tR(II), resulting product afforded nearly equal amounts of two epimeric perhydronaphthalenones I and II.

Data of Epimer I: 1H-NMR): 0.92 (H3-C-C(10)); 1.03 (d, J = 6.5, H3-C-C(4)); 1.27–1.47 (m, 3 H); 1.69 (br, s, H3-C-C(11)); 1.69–1.91 (m, 2 H); 1.76 (d, J = 14, H-C(1)); 2.11–2.19 (m, 2 H-C(3)); 2.36 (m, H-C(4)); 2.65 (d × d × t, J1 = 14, J2 = 2. J3 = 3, hex-C(8)); 2.66 (d × t, J1 = 14, J2 = 3, hex-C(6)); 2.81 (d, J = 14, H-C(1)).

Data of Epimer II: 1H-NMR): 1.02 (d, J = 6.5, H3-C-C(4)); 1.19 (s, H3-C-C(10)); 1.38 (d × t, J1 = 4.5, J2 = 13, hex-C(9)); 1.63, 1.68 (2 narrow m, 2 H3-C-C(11)); 1.83–2.00 (m, 2 H3-C-C(11)); 2.04 (d, J = 13.5, H-C(1)); 2.06 (t, J = 13.5, hex-C(3)); 2.17 (d × m, J1 = 14, hex-C(6)); 2.26 (d × d × d, J1 = 13.5, J2 = 4, J3 = 2, hex-C(3)); 2.30 (d, J = 13.5, H-C(1)); 2.50 (d × q, J1 = 14, J2 = 2, hex-C(8)); 2.70 (d × t, J1 = 14, J2 = 2.5, hex-C(6)).

Catalytic hydrogenation (EtIOAc, Pt, 20°/730 Torr, uptake 1 H2) of epimer I gave (4S, 4aR, 6R, 8aR)-6-Isopropenyl-4,8a-dimethyl-perhydronaphthalen-2-one (8a). – 1H-NMR): 0.92 (s, H3-C-C(10)); 0.89–0.93 (2 d, J = 7, 2 H3-C-C(11)); 0.97 (d, J = 6.5, H3-C-C(4)); 1.0–1.6 (miscellaneous m, 8 H); 1.68 (d, J = 14, H-C(1)); 2.02–2.16 (m, 2 H-C(3)); 2.36 (after H3-C(4) decoupling: d × t, J = 12, J2 = 5, H-C(4)); 2.62 (d, J = 14, H-C(1)).

Similarly hydrogenated, above epimer II gave (4R, 4aS, 6R, 8aR)-6-Isopropyl-4,8a-dimethyl-perhydronaphthalen-2-one (8b). – 1H-NMR): 0.89–0.92 (2 d, J = 6.5, 2 H3-C-C(11)); 1.03 (s, H3-C-C(10)); 1.15 (d, J = 7, H3-C-C(4)); 1.2–1.6 (miscellaneous m, 6 H); 1.70 (d, J = 14, H-C(1)); 2.08 (m, 2 H); 2.59 (m, 1 H); 2.66 (d, J = 14, H-C(1)).

Both 8a and 8b proved to be spectrally identical (1H-NMR) with the hydrogenation product of 7a and 7b, resp. (Sect. 3.3).

3.6. MS of P and Q, (+)-α-Cyperone (P) [13]: 218 (100, M+, C15H22O), 203 (35), 190 (7), 175 (56), 161 (63), 147 (80), 136 (64), 121 (76), 105 (66), 91 (89), 79 (68), 67 (57), 55 (54), 41 (63).

MS of (−)-10-Epi-α-cyperone (Q) [14]: 218 (23, M+, C13H22O), 203 (22), 190 (26), 175 (43), 161 (56), 147 (75), 132 (87), 119 (65), 105 (74), 91 (87), 79 (75), 67 (63), 55 (75), 41 (100).
REFERENCES