```
S. A. Medveda, N. A. Tyukavkina,
```

From a methanolic extract of the needles of Larix sibirica (Siberian larch) by chromatography on polyamide and elution with 30% aqueous methanol we have isolated a fraction containing three substances. The chromatography of this fraction on polyamide in a nonaqueous system [chloroform-methanol (95:5)] yielded an individual compound with mp $173-175^{\circ} \mathrm{C}$ (methanol), $[\alpha]_{D}{ }^{20}-23.01^{\circ}$ [c 0.25; methanol-water (1: 1)].

The UV absorption at 267 and $350 \mathrm{~nm}(\log \varepsilon 4.28,4.20,4.24,4.33)$ * and the frequency of the stretching vibrations of the $\mathrm{C}=\mathrm{O}$ group in the IR spectrum ($1660 \mathrm{~cm}^{-1}$) show the flavonoid structure of the compound. In the NMR spectrum, two doublets ($\delta=6.28$ and $6.50 \mathrm{ppm}, \mathrm{J}=2.6 \mathrm{~Hz}$) correspond to two protons at C_{6} and C_{8} of ring A. The lateral phenyl ring is para-substituted. This is shown by the bands of the deformation vibrations in the IR spectrum ($810,840 \mathrm{~cm}^{-1}$) and by two doublets ($\delta=6.98$ and 8.11 ppm) in the NMR spectrum. The constant $J=9.0 \mathrm{~Hz}$ corresponds to the interaction of the protons at C_{2}, and C_{3}, and those at C_{5}, and C_{6}, which are in the ortho positions with respect to one another. A signal at $\delta 12.68 \mathrm{ppm}$ is due to the proton of a $5-\mathrm{OH}$ group, the presence of which is also confirmed by a bathochromic shift of the longwave maximum by 44 nm in the presence of AlCl_{3}. A broad singlet (width 60 Hz) with its center at $\delta=9.82$ ppm is due to the protons of the $4^{\prime}-\mathrm{OH}$ and $7-\mathrm{OH}$ groups, leading to a displacement of the short-wave maximum by 8 nm and of the long-wave maximum by 19 nm in the UV spectrum in the presence of sodium acetate.

A signal at $\delta=5.49 \mathrm{ppm}$ relates to the protons of a glycosidic substituent. The β configuration of the glycosidic aglycone-sugar bond was shown by hydrolysis with β-glucosidase.

Acid hydrolysis gave the aglycone, with $\mathrm{mp} 269-272^{\circ} \mathrm{C}$ (aqueous methanol) with a yield of 61%, which corresponds to a monoglycoside.

In the NMR spectrum of the aglycone there is no signal at $\delta=5.49 \mathrm{ppm}$. The doublets corresponding to the protons at C_{6} and C_{8}, at $\mathrm{C}_{2}{ }^{\prime}$ and $\mathrm{C}_{6^{\prime}}$, and at $\mathrm{C}_{3}{ }^{\prime}$ and $\mathrm{C}_{5}{ }^{\prime}$ agree with the corresponding signals of the protons in the spectrum of the glycoside. The appearance of a free $3-\mathrm{OH}$ group on hydrolysis is satisfactorily confirmed by the increase in the bathochromic shift in the presence of AlCl_{3} in the UV spectrum of the aglycone as compared with the spectrum of the glycoside (55 nm). Consequently, the aglycone is $3,4^{\prime}$,-5,7-tetrahydroxyflavone (kaempferol).

The hydrolysate was shown to contain glucose by paper chromatography [butanol-pyridine- $\mathrm{H}_{2} \mathrm{O}$ (10: 3:3)].

The experimental results that we have obtained permit the compound isolated to be characterized as kaempferol 3-glucoside (astragalin), which has been found in the flowers of Aesculus hippocastanum L. [1].

The NMR spectra were taken by V. K. Voronov on a BS487B spectrometer. Dimethyl sulfoxide was used as solvent and as internal standard. The values of the chemical shifts are given relative to the signal of hexamethyldisiloxane.
*As in Russian original - Publisher.

[^0][^1]LITERATURE CITED

1. L.Hörhammer, H. J. Gehrmann, and L. Endres, Arch. Pharm., 262/64, 3, 113 (1959).

[^0]: Irkutsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR. Trans~ lated from Khimiya Prirodnykh Soedinenii, No. 1, p. 123, January-February, 1972. Original article submitted November 3, 1971.

[^1]: 01974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 W'est 17th Street, New York, V. Y. IOOIl. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

