J. Inorg. Nucl. Chem., 1960, Vol. 16, pp. 52 to 59. Pergamon Press Ltd. Printed in Northern Ireland

CHEMISTRY OF PHOSPHORUS FLUORIDES

E. L. MUETTERTIES, T. A. BITHER, M. W. FARLOW, and D. D. COFFMAN Central Research Department, E. I. du Pont de Nemours, Wilmington, Delaware

(Received 21 January 1960; in revised form 15 February 1960)

Abstract-Phosphorus tri- and pentafluorides were prepared in high yield and conversion by reaction of the respective chlorides and CaF₂ at 300-400°. The pentafluoride is a very strong acceptor molecule and forms complexes with amines, ethers, nitriles, sulphoxides and other organic bases. The 19F spectra of the complexes are fully consistent with an octahedral model, and the P-F coupling constants, similar to that in PF_6^- , suggest a relative insensitivity of hybridization to the type of donor molecule. In accord with the strong acceptor properties, the pentafluoride is an excellent catalyst for ionic polymerizations. Especially noteworthy is the PFs-catalysed polymerization of tetrahydrofuran to a very high $(M_n^- = 280,000)$ molecular weight elastomer. Phosphorus trifluoride, unlike the pentafluoride, exhibits no significant acceptor properties. However, the trifluoride does undergo a curious disproportionation, $3MF + 5PF_3 \rightarrow 3MPF_6 + 2P$, that may involve an MPF_4 intermediate.

Synthesis

We have found that phosphorus fluorides can be prepared in high yield and purity directly from calcium fluoride and the phosphorus chlorides. Calcium fluoride reacts exothermally with PCl₅ at 300-500° to form CaCl₂ and PF₅. In a sealed reaction vessel (metal) and in a flow system (glass) wherein gaseous PCl_5 was carried in an inert gas, conversions of PCl₅ to PF₅ ranged from 85 to 98 per cent. Purities were estimated to range from 85 to 98 per cent. Principal impurities were POF₃ (and SiF₄ when reaction was effected in glass equipment) and chlorine. Chlorine was readily removed by treatment with sulphur trioxide. Similarly, PCl_3 and CaF_2 gave PF_3 in 77 per cent yield at 350°.

Phosphorus pentafluoride was also prepared in good yield by "chlorofluorination" of PF_3 with CaF_2 and chlorine at 350° in a sealed vessel. This chlorofluorination is probably complex since each of the steps outlined below are either known reactions or were demonstrated in this study:

Acceptor properties of PF₅

Phosphorus pentafluoride exhibits the general acceptor properties of the classic Lewis acid, BF₃. Complexes of PF₅ with such bases as ethers, sulphoxides, amines, amides and esters were prepared, and data for these complexes are listed in Table 1. The PF₅ complexes are much less stable than the analogous BF₃ complexes. For example, unlike the BF₃ amine complexes that can be recrystallized from water, all of the PF₅ complexes are decomposed rapidly by water and by alcohols. The relationship is the reverse to that which pertains in the hydrolytic stability of BF_4^- and

 PF_6^- . The lower stability of the PF_5 complexes may be due at least partially to steric factors, the importance of which is well established in BF_3 complexes.⁽¹⁾ The P⁵⁺ atom is only slightly larger than B^{3+} and yet must accommodate two more fluorine atoms in its complexes. Direct evidence for a steric factor was found in ether and amine complexes: $PF_5 O(C_2H_5)_2$ is largely dissociated at 25° whereas $PF_5 O(CH_2)_4$ can be distilled at 116°/0.15 mm. Two hindered amines, triethylamine and 2,4,6-trimethylpyridine, showed only partial association with PF₅ at 25°.

Evidence for the structure of the PF₅ complexes was obtained from the ¹⁹F magnetic resonance spectra (40 Mc/s) of acetonitrile solutions of the sulphoxide, amine, oxime, amide and thioamide complexes. All of these consisted of two sets of a doublet and quintuplet of relative intensities four and one, respectively; the two sets arise from ³¹P-¹⁹F coupling. The doublet-quintuplet fine structure is the predicted pattern for an octahedral structure in which there are four equivalent, coplanar fluorine atoms and one apical fluorine atom. The ³¹P-¹⁹F coupling constants varied slightly (710-765 c/s) from complex to complex and averaged about 740 c/s, as compared to 710 c/s for PF_{6} . Since M-F coupling constants appear to reflect^(2,3) the fractional p character of M–F hybrid bonds (only p electrons are effective in the coupling), the near identity of J_{P-F} in PF_6^- and PF_5 base suggests similar hybridization in these fluorides. The F-F coupling constants averaged about 55 c/s.

The doublet-quintuplet fine structure was not observed in the ¹⁹F spectra of PF₅ dissolved in ethers, esters and nitriles; only a doublet was observed at 25°. In the case of $PF_5 (C_2H_5)_2O$ dissolved in ether, the expected pair of doublets (broadened) but not the pair of quintuplets were resolved at -78° . On warming, the doublets merged into single peaks. Loss of fine structure is attributed to the rapid equilibrium:

$$PF_5 + base \Longrightarrow PF \cdot base$$

that would yield effective equivalence of fluorine atoms and yet preserve ³¹P-¹⁹F coupling, because no P-F bonds are cleaved in this scheme. Such a rapid equilibrium is consistent with the very weak donor properties of the above-cited bases.

In accord with the strong acceptor properties of PF₅, the fluoride is an outstanding catalyst, particularly in ionic polymerizations. Examples of organic monomers readily polymerized are vinyl ethers and sulphides, isobutylene, styrene, butadiene, dihydropyran and epoxides. Phosphorus pentafluoride, unlike boron trifluoride, is especially effective for the polymerization of tetrahydrofuran. Bulk polymerization of tetrahydrofuran at 30° in the presence of PF₅ yielded very high molecular weight ($M_n^- =$ 180,000-280,000) elastomeric solids. Phosphorus oxyfluoride is not a catalyst for these polymerizations.

Acceptor properties of PF₃

Arsenic and antimony trifluorides have been shown to function as Lewis acids by the formation of $MAsF_4^{(4.5)}$ and $MSbF_4^{(6)}$ salts and by formation of molecular complexes^(6,7) with organic bases. Thus, phosphorus trifluoride was expected to exhibit

⁽¹⁾ H. C. BROWN and co-workers, cf. H. C. BROWN, J. Chem. Soc. 1248 (1956).

 ⁽a) H. S. GUTOWSKY, D. W. MCCALL and C. P. SLICHTER, J. Chem. Phys. 21, 279 (1953).
 (a) E. L. MUETTERTIES and W. D. PHILLIPS, J. Amer. Chem. Soc. 81, 1084 (1959).
 (a) A. A. WOOLF and N. N. GREENWOOD, J. Chem. Soc. 2200 (1950).

⁽⁵⁾ E. L. MUETTERTIES and W. D. PHILLIPS, J. Amer. Chem. Soc. 79, 3686 (1957).
⁽⁶⁾ H. J. EMELEUS, Fluorine Chemistry Vol. 1, p. 55. Academic Press, New York (1950).
⁽⁷⁾ A. BESSON, C.R. Acad. Sci., Paris 110, 1258 (1890); E. L. MUETTERTIES. Unpublished work.

acceptor properties although to a lesser degree than the lower members of the Group V trifluorides. However, we could find no evidence for molecular complex formation and only indirect evidence for fluorophosphites.

Fluorophosphites had been previously suggested by several investigators.* We found that KF and CsF do, in fact, absorb PF_3 at ~150° but the product is not MPF_4 but a mixture of MPF₆ and red phosphorus. Thus, these alkali metal fluorides induce a rather remarkable low temperature disproportionation of PF₃ with formation of the very stable hexafluorophosphate salts the presumed driving force of the reaction:

$$3MF + 5PF_3 \rightarrow 3MPF_6 + 2P$$

This reaction may proceed through an MPF₄ intermediate.[†]

Phosphorus trifluoride is only slowly absorbed by water, a weak base, but it is rapidly absorbed by concentrated aqueous base. This attack by OH- ion may well involve intitial formation of PF₃OH⁻. However, attempts to detect intermediate fluorophosphites by following the ¹⁹F spectrum (for appearance of a doublet due to $^{31}P_{-}^{19}F$ coupling) of aqueous KOH solution during PF₃ absorption were unsuccessful; only fluoride ion was detected. Thus, fluorophosphites, if they exist, are hydrolytically unstable as is the tetrafluoroarsenite anion.⁽⁴⁾

Fluorine exchange

Several fluorides, AsF₃, SbF₃ and SbF₅, closely related to PF₃ and PF₅ show a marked tendency to undergo fast intermolecular exchange either in the pure state or with covalent fluorides.⁽³⁾ However, we found, from nuclear magnetic resonance studies, that neither PF₃ nor PF₅ undergo fast exchange either in the pure state or in the presence of a number of fluorides that are known to catalyse fluorine exchange. A major distinction between PF_5 and SbF_5 and between PF_3 and AsF_3 or SbF_3 is the degree of molecular association; for example, PF_5 (b.p. -80°) is essentially non-associated whereas SbF₅ (b.p. 150°) is highly associated through fluorine bridge bonding. These properties and exchange behaviours are consistent with an earlier observation that there is some correlation between ease of intermolecular fluorine processes and the degree of molecular association in a fluoride.(3,12)

EXPERIMENTAL

Materials and physical methods

Reagent grade calcium fluoride was dried at 300-500° before use. Commercial samples of phosphorus chlorides and chlorine were used directly without purification. The organic bases were purified by standard techniques. Tetrahydrofuran employed in the polymerization studies was refluxed over KOH, then over LiAlH₄ and was finally distilled from LiAlH₄ under an atmosphere of nitrogen immediately prior to use.

The nuclear magnetic resonance spectra were obtained with a Varian high resolution spectrometer and electromagnet at 40 Mc/s and 56.4 Mc/s and fields of ~7,500 and 14,000 gauss, respectively. For the fluorine exchange studies, the fluorides were sealed in quartz capillaries (2 mm i.d.).

* BERTHELOT⁽⁸⁾ and MOISSAN⁽⁹⁾ proposed that fluorophosphites are formed when PF₃ is absorbed by aqueous bases; however, no products were isolated or characterized. \dagger The fluorides, AsF₃⁽⁴⁻⁵⁾, IF₅⁽¹⁰⁾ and TeF₆⁽¹¹⁾ react exothermally with KF, RbF, and CsF to form MAsF₄,

MIF, and M₂TeF₈ salts but none of these fluorides react with sodium fluoride even under forcing conditions. Similarly, we found that PF₃ will not react with sodium fluoride.

⁽⁸⁾ M. BERTHELOT, C.R. Acad. Sci., Paris 100, 81 (1885).

⁽⁹⁾ H. MOISSAN, C.R. Acad. Sci., Paris 99, 655 (1884).

(10) H. J. EMELIUS and A. G. SHARPE, J. Chem. Soc. 2206 (1949); E. L. MUETTERTIES. Unpublished work. (11) E. L. MUETTERTIES, J. Amer. Chem. Soc. 79, 1004 (1957).

(12) E. L. MUETTERTIES and W. D. PHILLIPS, J. Amer. Chem. Soc. 79, 322 (1957).

Synthesis of PF₅ and PF₃

A "Hastelloy C"-lined pressure vessel was heated to 200-300°, evacuated, cooled and then charged with 80 g CaF₄ and 50 g PCl₅. The vessel was heated to 400° for 3 hr and then cooled. Volatile product was distilled directly into a cooled (-78°) stainless steel cylinder. Molecular weights derived from gas density of the crude product ranged from 115 to 121 (theory, 126). Removal of chlorine impurity by treatment of the gas with SO₃ raised the molecular weight values to ~ 124 . The remaining impurities were largely POF₃ and SiF₄. Mass spectrometric analyses consistently gave low values for PF_{5} content due to hydrolysis within the spectrometer. Analytical determination of phosphorus and fluorine indicated purities in the 92–98 per cent range. Conversions of PCl_{5} to crude PF_{5} in nine seperate runs ranged from 85-98 per cent.

A 64 mm Pyrex tube, $2\frac{1}{2}$ ft. in length, was packed with 400 g of $\frac{3}{16}$ in. calcium fluoride pellets in the centre 7 in. section. The reactor system was then baked out in a split furnace at 400° for 12 hr. The entrance to the reactor was connected to a small flask fitted with a nitrogen gas inlet and filled with about 70 g of phosphorus pentachloride. To the exit end of the reactor was connected a cold trap and a gas bubbler. The cold trap was cooled with liquid nitrogen. A slow stream of nitrogen gas was then passed through the reactor while the flask containing the phosphorus pentachloride was heated to sublime the chloride into the reaction zone. The reaction was exothermic and the reaction mass temperature was maintained at about 400° by control of the furnace input and of the rate of flow of phosphorus pentachloride. The gaseous product was collected in a liquid nitrogen trap and, at the completion of the reaction, it was transferred to a stainless steel cylinder. In the course of the reaction the section of the Pyrex tube enclosing the reaction zone was slightly etched due to the reaction:

$$2PF_5 + SiO_2 \rightarrow 2POF_3 + SiF_4$$

In all of the runs, infra-red analysis indicated that the major product (ca. 80-90 per cent) was phosphorus pentafluoride. The only impurities indicated were phosphorus oxyfluoride and silicon tetrafluoride. A summary of four runs using the above procedure is given below:

Amount of PCl _s sublimed (g)	Yield of crude PF₅(%)	Conversion of PCl ₅ to crude PF ₅ (%)	Reaction time (hr)
98	68	64	6
65	87	63	1.33
70	98	98	1
100	98	98	1.25

Phosphorus trifluoride was prepared from PCl₃ and CaF₂. Reaction of PCl₃ (180 g) and excess CaF_{a} (234 g) in a "Hastelloy C"-lined pressure vessel at 350° for 8 hr yielded ~107 per cent of the theoretical volatile product indicating incomplete reaction. The crude product was roughly separated and the low boiling fraction was distilled. About 89 g (77 per cent yield) of PF_3 , boiling at -101° , was obtained.

Chlorination and chlorofluorination of phosphorus trifluoride

Phosphorus trifluoride (30.2 g) and chlorine (24 g) were distilled into a 500 ml stainless steel cylinder which was cooled with liquid nitrogen. The mixture was then allowed to warm to room temperature over a period of about 30 min while the cylinder was slowly rotated. An exothermic reaction was not detected. In 24 hr, it was apparent that much of the product in the reaction was a solid. The cylinder was allowed to stand for a further period of five days and then was evacuated to about 1 mm pressure. The cylinder was opened and found to contain 47.7 g of a white solid that fumed in air and analysed approximately for a mixture of $PCl_4 + PF_6^{-(13)}$ (or $PCl_4 + F^{-*}$. The ¹⁹F magnetic resonance spectrum of a pyridine solution of this solid consisted of a doublet that was identical to that of PF6- (NH4PF6 solution).⁽³⁾

* KOLDITZ⁽¹⁴⁾ has reported PCl₄+F⁻ to be a product of the thermal decomposition of PCl₄+PF₆⁻. ⁽¹³⁾ L. KOLDITZ, Z. Anorg. Chem. 284, 144 (1956). ⁽¹⁴⁾ L. KOLDITZ, Z. Anorg. Chem. 286, 307 (1956).

					An	alytical da	ta					
Adduct	Carbo	(%) uc	Hydro£	çen (%)	Phospho	rus (%)	Fluorir	1e (%)	Nitroge	sn (%)		
	Calc.	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.	Found	m.p.('C)	0.p.(^C)
PF ₅ ·(CH ₃) ₃ N	19-47	20-08	4-90	5-09	16.74	16-50	5 1-33	51-69	7-57	7-82	214-215	170 ⁰⁻¹⁵ mm
PF ₅ ·C ₅ H ₅ N	29·28	29-94	2.46	2-94	15.11	13-62	46.32	46.61	6.83	7-27	179-182	
PF ₅ ·(CH ₃) ₂ NCHO	18-01	18.13	3.54	3-69	15.56	15.27	47-72	47-51	7.04	7-31	118-120	50 <1mm
PF ₅ ·(CH ₃) ₂ NCHS	16-74	16.88	3.28	3.70	14.40	14-03	1		6.51	6.50	190 d	
PF ₅ ·(CH ₃) ₂ CNOH	18-01	18-36	3-54	3-87	15.56	14.99	47-72	46-33			þ	
PF ₅ ·(CH ₃) ₂ SO	11.77	13.65	2.96	3.55	14.75	15.14	46-54	45.78	15.71	16.37	q	
									(S)	(S)		
PF ₅ ·(C ₂ H ₅) ₂ O		Ι		(0-958	:1-00 PF	:(C ₂ H ₅),C) at 5°)	I	:	:	1	dis.
PF ₅ ·(CH ₂) ₄ O	24-25	24-49	4·08	5.62			1	١		1	55	116-118 ^{0.15mm}
PF ₅ ·(CH ₂) ₅ O				_	(~1:1 PF	; (CH ₂),	O at 25°)	-			45-46	dis.
CH,		·							_			
-<												
PF, 0					(~1:1 PF	' ₅ :C,H ₁₀ O	at 25°)					70-80 ^{85 m ш} (dis.)
										_		

TABLE 1.--PF₅ COMPLEXES

In an attempt to isolate the molecular species PF_3Cl_2 , the above procedure was followed except that immediately after mixing the product was transferred to a low temperature still. Distillation covering the period of 2.5 hr produced the following fractions: (1) 25 weight per cent b.p. $-40-0^\circ$, (2) 70 weight per cent b.p. $0-5^\circ$, and (3) 5 weight per cent of liquid residue. Fraction (2) corresponded approximately in boiling point to the literature value for PF_3Cl_2 but its boiling point dropped slowly at total reflux suggesting that slow disproportionation was occuring in the still.

The PF_s -Cl_a reaction was also examined by following the pressure as a function of time (Table 2, 0.52 mole of each reagent at 25° in a 500 ml stainless steel vessel).

Time (hr)	Pressure (atm)	Non-volatiles weight (%)
0.5	2.9	
1	3.0	<1
2	3.3	-
19	6.1	39
45	7.5	76
65	6.9	79
90	6.6	81
115	6.4	81
140	6.3	82

TABLE 2.—PF3-Cl REACTION

These data may be interpreted in terms of a very fast reaction of PF_3 and Cl_2 to give PF_3Cl_2 followed by two slow reactions, one that leads to a pressure decrease,

$$2PF_{a}Cl_{a}(l) \rightarrow PCl_{a} + PF_{a}(c)$$

and one that gives a pressure increase,

$$2PF_{s}Cl_{s}(l) \rightarrow PCl_{s}(c) + PF_{s}(g)$$

At the end of 140 hr, the volatile fraction was essentially all PF₅, and the solid, non-volatile product was largely $PCl_4+PF_6^-$ with small amounts of PCl_5 or PCl_4+F^- .

A mixture of 81.2 g of PF₈, 65.5 g of Cl₂ and 123 g of CaF₂ was charged into a 1 l., Hastelloy rocker pressure vessel and heated for 8 hr at $350^{\circ,(15)}$ The gaseous product weighed 116 g and its density corresponded to an average molecular weight of 115 (theory for PF₅, 126). Elemental analysis of the gas indicated a halogen-phosphorus ratio of 4.95:1 and a fluorine-chlorine ratio of 19:1. The product was largely phosphorus pentafluoride that contained chlorine impurities.

Preparation of PF₅ complexes

The complexes of PF₅ with nitrogen or sulphur organic bases were prepared by passing phosphorus pentafluoride slowly into a solution of the base in toluene. In some cases a precipitate was formed immediately and, in others, concentration of the toluene solution was necessary before a significant amount of crystalline complex separated out. In most instances, the complexes were recrystallized from tetrahydrofuran, dimethoxyethane or acetonitrile. The tetrahydrofuran complex⁽¹⁰⁾ was prepared by passing phosphorus pentafluoride into tetrahydrofuran while the reaction mass was maintained at 0°. At about the point at which saturation of the tetrahydrofuran occurred, a solid product was formed. This material was then transferred under nitrogen to a vacuum sublimator whose cold finger was maintained near -40° , and with a vacuum of approximately 0.02 to 0.05 mm, the complex sublimed at about 70°. The analytical data and physical properties for these complexes are listed in Table 1. Some complexes were characterized only by the stoicheiometry of the PF₅·Sase reaction; there were PF₅·S(CH₂)₄, PF₅·CH₃COOC₂H₅, PF₅·CH₃CN, and 2PF₅·N₃O₄. Stoicheiometries were determined in a vacuum system by reacting a known volume of PF₅ gas with a weighed

(15) E. L. MUETTERTIES, U.S. Pat. 2810629.

(16) E. L. MUETTERTIES, U.S. Pat. 2748145.

amount of liquid base. The decrease in pressure of the phosphorus pentafluoride (within a known volume of the vacuum system) then gave a rough measure of the stoicheiometry of the reaction.

The ease of protonic attack of all the PF_s complexes was indicated by the observation that (1) molecular weight determinations in water (cryoscopic) and alcohol (ebulliometric) gave values that were fractions of the theoretical value and (2) the ¹⁰F spectra in water and ethanol did not show the fine structure exhibited in acetonitrile solutions. The complexes were not soluble in benzene but molecular weight determination in acetonitrile (ebulliometric) indicated the complexes were simple molecular species, e.g. PF_s (CH₃)₂NCHS, found, 218, calc., 215; PF_s ·N(CH₃)₃, found, 199, calc., 185; and PF_s ·(CH₃)₃NCHO, found, 182, calc., 199.

Mr. A. L. BIDDLE of this laboratory indexed the PF₅·C₅H₅N complex as tetragonal with the parameters $a_0 = 13.70$ Å, $c_0 = 11.58$ Å, c/a = 0.845, and z = 8·

Phosphorus oxyfluoride was found to be, at best, a very weak acceptor molecule. This fluoride gave very little heat of reaction (or solution) with typical organic bases. At 25° , the solubility of POF₃ in dimethylformamide and in dimethylsulphoxide is very low (5 per cent or less).

Reactions of PF₃

The solubility of PF₃ in organic bases was determined in a vacuum system at ~600 mm PF₃ partial pressure and 25°, and the values obtained for dimethyl sulphoxide, dimethylformamide and pyridine were, respectively, 0.01, 0.03, and 0.05 mole/mole of solvent. The ¹⁹F spectrum of a mixed solution of pyridine and liquid PF₃ gave the characteristic PF₃ spectrum; there was no significant perturbation of the ³¹P-¹⁹F coupling constant. Equimolar amounts of pyridine and PF₃ were heated in a stainless steel-lined pressure vessel for 2 hr and these components were recovered unreacted.

Cesium fluoride in contact with an atmosphere of PF_8 in a vacuum system began to slowly absorb the trifluoride at about 130°. Potassium fluoride behaved similarly. X-ray investigation of the solid products indicated the presence of the corresponding metal hexafluorophosphates. The solid products when dissolved in water and filtered yielded a red-brown, insoluble material that proved by the nature of its combustion and by the odor of the combustion products to be amorphous red phosphorus. The filtrate yielded a precipitate with nitron acetate that analytical data indicated to be nitron hexafluorophosphate. (Found: C, 53.71; H, 3.74. Calc. for $C_{s0}H_{16}N_4HPF_6$: C, 52.41 H, 4.03%).

This disproportionation reaction was not driven to completion even in pressure vessels at 250°, presumably because the red phosphorus coated the surface of the unreacted metal fluoride. Sodium fluoride showed no evidence of reaction with the trifluoride in a sealed reactor at temperatures as high as 280° (5 hr reaction period).

Polymerization of tetrahydrofuran

Phosphorus pentafluoride or the phosphorus pentafluoride-tetrahydrofuran complex readily initiated the polymerization of tetrahydrofuran at temperatures of 10-30°.(17) Uniform conversions to polymer of 60-70 per cent were obtained over a time range of 1-18 hr but molecular weights were usually at a maximum after a period of 5-7 hr. A typical example of a bulk polymerization is as follows: Tetrahydrofuran (89 g) containing the PF₅-tetrahydrofuran complex (0.24 g) was maintained at 30° for 6 hr under a nitrogen atmosphere. The viscosity rapidly increased and the material gave no evidence of flow after 1.5 hr. The resultant product was heated in water to destroy the catalyst and was then dissolved in tetrahydrofuran and slowly added to ice water in a Waring Blendor. The polymer separated out as a white, shredded solid (60 per cent conversion, inherent viscosity 3.94). High molecular weight polytetrahydrofuran samples usually showed block melting points greater than 150° and ranged as high as 215°. True crystalline melting points of 40-47°, as indicated by the disappearance of polymer crystallites to give amorphous material, were obtained by use of both the X-ray and polarizing hot-stage microscope methods. If 45° is taken as a representative crystalline melting point and if the empirical relationship, $T_g = \frac{2}{3} T_{mp} - 90$ (in °C), between the amorphous transition temperature and the crystalline melting point is used, one obtains a calculated value of -60° for the amorphous transition temperature. Natural rubber and neoprene have values of -72° and -40° , respectively. Thus, polytetrahydrofuran would appear to be inherently a rubbery polymer. The very high block melting points, in the range 150-200°, reflect primarily the high melt viscosity of the higher molecular weight polymers.

(17) E. L. MUETTERTIES, U.S. Pat. 2856370.

Chemistry of phosphorus fluorides

Fluorine exchange

Fast intermolecular exchange processes lead to collapse of fine structure in nuclear magnetic resonance spectra. This criterion was employed to detect exchange in PF₅ and PF₅. Neither PF₅ nor PF₅ were found to undergo fast (10⁸ sec⁻¹) intermolecular fluorine exchange in the pure liquid state. In the ¹⁹F spectra, the ³¹P-¹⁹F coupling is not lost in liquid PF₅ or PF₅ up to the critical temperature (estimated $T_c: \sim 15^\circ$, PF₅ and $\sim -15^\circ$, PF₃). The coupling is also preserved in the gaseous state at 30° in both fluorides. Retention of ³¹P-¹⁹F coupling was also observed in liquid or gaseous PF₃ when this fluoride was in contact with PF₅ (*l*), AsF₃ (*c*) or (*l*), CsF(*c*), BF₃ (*l*), or SF₄ (*l*). The same was true for PF₅ in contact with PF₃ (*t*), AsF₃ (*c*) or (*l*), CsPF₆ (*c*), BF₅ (*l*), IF₅^{*} (*c*) or (*l*), or SF₄PF₅ (*c*).

* Liquid IF₅ (an associated liquid) and liquid PF₅ are not miscible.