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The chemistry of mononuclear rhodium complexes bearing 
phosphane ligands is dominated by compounds with the transi- 
tion metal center in the + I  or + 111 oxidation state.['] Although 
[ (Me,P),Co]- has been well studied,['] corresponding rhodium 
compounds have so far been restricted to cases where highly 
x-acidic ligands are present, for example K[ (F,P),Rh] ,[31 

Na[(Ph,P),(CO),Rh],r41 and Li[(triphos)(CO)Rh] (triphos = 
{ 2-[ (diphenylphosphano)methyl]-2-methylpropane-1,3-diyl) bis- 
(diphenylphosphane)) .[51 In sharp contrast, the reduction of 
[(Me,P),RhCl] with Na/Hg leads to the formation of the hetero- 
bimetallic cluster [(Me,P),,Hg,Rh,] .r61 

Here we report the synthesis, spectroscopic properties, and 
reactivity of bimetallic complexes of the form [ (P,),Rh][MgCI] 
(la and lb, P2 is the bidentate chelating phosphane ligand 
Ph2P(CH,),PPh2 termed 2a when n = 2 and 2b when n = 3), 
which contain rhodium in the formal oxidation state - I .  They 
are the first examples of a new class of highly nucleophilic tran- 
sition metal compounds that can be referred to as "Grignard- 
analogous" rhodium phosphane complexes.['~ *I 

A THF slurry of the yellow chloro complex [(2a)2RhC1][91 
(3a) reacts smoothly with an excess of specially activated magne- 
sium (Mg*)['O] at room temperature to give a dark red solution 
of l a  (Scheme 1). Within 2 h 3a disappears completely, and 

CI MgCl' 

n = 2 :  3a la 
n=3:  3b lb 
Scheme 1. Synthesis of Grignard-analogous , rhodium phosphane complexes 
[(P,),Rh][MgCI] (la-b) from the corresponding chloro complexes 3a.b and active 
magnesium (Mg*). The chelating phosphane ligands are schematically displayed: 
methylene groups are shown for only one ligand, and the phenyl substituents at the 
phosphorous atom have been omitted. RT = room temperature. 

exactly one equivalent of Mg* is consumed; no further reaction 
occurs under these conditions. Monitoring of the reaction by 
31P{'H} NMR spectroscopy (81.01 MHz, room tempera- 
ture)" I ]  indicates the clean formation of la, which is charac- 
terized by a doublet of slightly broadened lines centered at 
6 = 62.0 (J(Rh,P) = 197 HZ).[ '~] Although no directly related 
data can be found in the literature, identical trends have been 
observed for [(2a),RhX] (X = C1, H, MgCl) and I(triphos)- 
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Table 1. "P('H) NMR spectroscopic data for [(Za),RhX] (X = CI, 3a; X = H, 4a; 
X = MgC1. la)  and [(triphos)(CO)RhX] (X = CI, H, Li) [a]. 

x = c1 X = H  X = M  

[(Za),RhXl 3a 4a la.  M = MgCl 
6 = 58.2, d 6 = 56.7, d 
J =133 Hz J = 1 4 3 H z  J =  197 Hz 

[ (tnphos)(CO)RhX] IbI [CI [b], M = Li 
6 = 3.0, d 6 = 1 6 , d  6 = 21.4, d 
J = 107 Hz J = 116 Hz J = 155 Hz 

6 = 62, d, br 

(CO)RhX] (X = C1, H, Li).[5, This strongly supports the as- 
signment as l a  (Table 1). 

After filtration, a THF solvate of l a  can be precipitated from 
the reaction mixture with pentane. The IR spectrum of this 
extremely air- and moisture-sensitive, dark red, microcrystalline 
solid (m.p. = 110- 11 3 0C)[14J reveals the absence of the charac- 
teristic bands for the Rh-Cl and Rh-H units in 31 (353 cm- I )  

and 4a (1897 cm-') and exhibits a new band for the Mg-Cl 
vibration at 321 cm-'. 

The reaction of 3b with Mg* proceeds in an identical manner 
to give lb, which exhibits NMR data similar to that of l a  
(6~24.8, very broad doublet, 3-170 Hz, 121.06 MHz, RT). 
Preliminary experimental results show that the NMR spectra of 
l a  and l b  are highly dependent on field strength, temperature, 
and concentration. This suggests an intermolecular dynamic 
exchange process in solution. The high conductivity of l a  and lb  
at room temperature" '1 strongly supports their formulation 
under these conditions as solvent-separated ion pairs with tetra- 
hedral coordination at the d" transition metal center in the 
[(P,),Rh]-c~re,[~~ which may be in equilibrium with a pentaco- 
ordinated covalent bimetallic species.['61 Nevertheless, other 
possible processes such as Schlenk-type equilibria cannot be 
ruled out. 

The Grignard-analogous reactivity of l a  (Scheme 2) and 
l b  clearly reflects the high nucleophilicity of the rhodium 

Me 

la 3a 

I Me 3 S i C I 

6a 4a 
1 
Scheme 2. Reactivity of the Grignard-analogous rhodium complex l a  towards var- 
ious electrophiles and carbon dioxide. All reactions were carried out in T H F  or 
[D],THF at room temperature. P = PPh,. 
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centers and gives further unambiguous evidence for their for- 
mulation as [(P,),Rh][MgCl] . Careful protonolysis with stoi- 
chiometric amounts of EtOH gives the hydride complexes 4a 
and 4b in quantitative yields. Methylation of l a  with methyl 
iodide leads to the rhodium complex 5a, which can be readily 
separated from the magnesium salts and isolated in 7 6 %  

In  principle, the reaction of Grignard-analogous phosphane 
complexes with R,SiX should offer an interesting approach to 
bimetallic phosphane complexes with nonbridging Rh-Si units. 
This class of compounds has attracted considerable interest in 
recent However, the reaction of l a  and Me,SiCl at 
room temperature leads to quantitative formation of the hy- 
dride 4a. GC analysis of the volatile components reveals the 
presence of the trimethylsilyl ether of I-butenol. This suggests 
the intermediate formation of [(Za),RhSiMe,] (6a), which 
undergoes a ring-opening reaction with solvent T H E  The ther- 
mal instability of complexes [(R,P),RhSiR,] ( n  = 3,4) is well 
do~umen ted . "~~  but Aizenberg and Milstein have very recently 
reported complexes of type [ (Me,P),RhSiR,] . These species 
have a limited, but definite lifetime in THF at room tempera- 
ture.[20cl 

Complexes l a  and l b  should also be suitable for activation of 
C0,1211 since they contain both a highly electron-rich and an 
electron-deficient metal center. A similar methodology has been 
introduced by Floriani and co-workers.[' ' 3  2 2 1  Replacement of 
the argon atmosphere over a THF solution of l a  with CO, 
results in the immediate formation of a yellow precipitate, which 
consists of an approximately 1 : 1 mixture of 3a and MgCO,. 
The supernatant also contains small amounts of 3a; this is there- 
fore the only phosphorus-containing product. Labeling experi- 
ments with 13C0, and GC/MS analysis of the gaseous products 
revealed the concomitant formation of 3C0. Thus, the overall 
process is the conversion of two molecules of CO, to CO and 
CO: -.  This reaction has been frequently observed for transition 
metal complexes that attack carbon dioxide at the Lewis acidic 
carbon centcr.['la. In the present case, the highly nucleophilic 
rhodium center provides the two electrons required for this pro- 
cess. 

As the starting material (3a) for the formation of l a  is regen- 
erated in this reaction, the possibility of a catalytic cycle based 
on this process was tested. Unfortunately, conversion of 3a to l a  
with excess Mg* under one atmosphere CO, was not very effec- 
tive; only three catalytic turnovers were obtained after 24 h. 
Nevertheless, this reaction provides the first example of a homo- 
geneously catalyzed reduction of CO, to CO at a transition 
metal center, whereby the two reduction equivalents are provid- 
ed by a main group metal and not a by photo- or electrochemical 

To the best of our knowledge, this is the first ex- 
ample of a nonelectrochemical catalytic process based on the 
interconversion of rhodium( - I )  and rhodium(1) centers, which 
are coordinated only to phosphane ligands. 

In conclusion, transition metal phosphane complexes such as 
3 react with Mg* to give well-defined molecular compounds 1 
with highly nucleophilic, mononuclear rhodium centers in 
formally negative oxidation states. The phosphorus ligands 
at the central metal atom provide a straightforward, diag- 
nostic tool for studying the structure and reactivity of these 
species in solution. Based on their composition and chemical 
behavior, compounds of type 1 can be referred to as Grignard- 
analogous transition metal phosphane complexes. Their use 
as versatile reagents for organometallic transformations, in- 
cluding the synthesis of other heterobimetallic complexes and 
catalytic processes, offers a broad range of potential applica- 
tions. 

yield,[17, 181 

Experimental Section 
All manipulations were carried out under an argon atmosphere in flame-dried 
glassware with standard Schlenk techniques. T H F  and [D],THF were distilled from 
[Mg-anthracene.3 thf] prior to use. NMR spectra were recorded in sealed tubes or 
in tubes equipped with J. Young valves. 
[(Za),Rh][MgCl] (la):  Mg* (0.65 g, 24.8 mmol) was added to a slurry of 3a (2.41 g, 
2.59 mmol) in T H F  (80 mL), and the mixture stirred at room temperature. After 2 h 
the solution was filtered and evaporated to dryness. The residue was then redis- 
solved i n T H F ( l 0  mL). Subsequent additionofpentane(5,l v v)yielded l a . x T H F  
(2.73 g) as a dark red, microcrystalline solid. Analytical data are summarized in 
Table 1 and in the text. Complex I b  was synthesized by the same proced e on a 
smaller scale (3b: 0.57 g).  
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Supramolecular Complexation 
of 1,2-Dicarbadodecaborane( 12)** 
Rodney J. Blanch,* Mark Williams, Gary D. Fallon, 
Michael G. Gardiner, Rana Kaddour, and 
Colin L. Raston* 

Although the carboranes 0-, m-, and p-C,B,,H,, [1,2-, 2,7-, 
and 1,12-dicarbadodecaborane( 12)] have been known for over 
thirty years, their potential for building macromolecules and 
forming supramolecular assemblies has only recently been ex- 
plored." -41 These studies include linkage of the cages through 
the carbon centers by organic groups['. or metal centersL3] and 
inclusion complexation of o-C,B,,H,, in a-, b-, or 7-cyclo- 
dextrin as 2: 1 and 1 : 1 complexes in aqueous media.l4] The for- 
mation of the 2: 1 complexes possibly involves complete encap- 
sulation of the carborane by two host molecules. In the case of 
the 1 : 1 complexes, polymeric structures in which both sides of 
each cyclodextrin make contact with a carborane may prevail. 
The different dipole moments of the three carboranes may be a 
useful property to exploit for purification of the carboranes. 
Conventional chromatographic techniques make the separation 
of the p-  and m-isomers difficult.[51 

The inclusion chemistry of carboranes has been very limited 
so far. This is surprising given the nexus between these clusters 
and the buckminsterfullerene C,, , for which there have been 
several 'I The carboranes and C,, are all remarkably 
thermally stable, icosahedral clusters with similar diameters of 
about 8 and 10.0 A, respectively. However, it is noteworthy that 
only the p-isomer is nonpolarized in the ground state, like C,, . 

Here we report complexation of the ovtho-carboranes by the 
rigid, bowl-shaped cyclotriveratrylene (CTV)@. and its sym- 
metrically tris(ally1)-substituted analogue (CTV') in non- 
aqueous media (Scheme 1) .[''I Both species form complexes 
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11 to luene  

Scheme 1 

with C60.[61 Despite the use of equimolar amounts of the two 
starting materials, CTV forms a 2: 1 adduct with o-C,BloH,, in 
the solid state. While the 2:l ratio can indicate that two host 
molecules encapsulate the cluster, the X-ray structure revealed 
that only one of the ligands binds to the cluster. The other one 
seems to act as a space filler (see below). The IR spectrum shows 
a significant shift of 13.5 cm-' to lower energy of for the v ~ - ~  
band of the carborane and a shift of 15.3 cm- ' to higher energy 
for the v ~ - ~  band. This is consistent with the involvement of the 
C-H bonds in nonclassical hydrogen bonding. Dispersal of the 
extra charge on the carbon atoms results in a strengthening of 
the B-H bonds. CTV also complexes to o-C,BlOHIZ, and the 
product shows similar IR shifts (12.5 cm- ', 3.2 cm- ', 
v ~ - ~ ) .  However, the crystals obtained were unsuitable for crys- 
tallographic studies. 

'HNMR solution spectra of the 2 : l  complex show that a 
rapid exchange process occurs between complexed and uncom- 
plexed carborane. Single peaks observed for the o-carborane 
C-H groups are significantly shifted upfield. The 'HNMR 
spectra of complexed and uncomplexed CTV are essentially the 
same. Variation of the molar fraction of carborane relative to 
CTV shows a nonlinear relationship with the chemical shift of 
the carborane C-H protons (from 6 = 3.53 to 3.36 for ratios of 
o-carborane to CTV of 5 :  1 to 1 : 5). This implies that the com- 
plexation is not a simple 1 : 1 supramolecule formation. Indeed, 
the inability to fit the NMR data to this simple model indicates 
that o-carborane can bind in both an endo and exo fashion to the 
cavity of the CTV. 

In the solid state'"] the 2: 1 complex consists of o-C,B,,H,, 
in a host-guest contact with one of the CTV molecules (Fig- 
ure 1). The other CTV forms a zigzag rr-stacked column in 
which the intermolecular CTV contacts are at the van der Waals 
limit (Figure 2). The asymmetric unit is made up of one host- 
guest species and one CTV of the column, which is built up by 
a screw axis along the b axis such that rr stacking is only effective 
for a part of two of the aromatic rings of each CTV. The struc- 
ture represents the first authentic host-guest complex of a main 
group cluster other than C,o.[61 The lengths of the covalent 
bonds in the CTV molecules[91 and the carborane[l3I are in the 
expected range. 

The cavity of CTV is shallow relative to the diameter of the 
carborane, and association of the two units is best described 
as a perching complex.['41 Diffraction data were collected at 
- 100 "C: this facilitated the refinement of the hydrogen 
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