
Vol.17 No.3 J. Comput. Sci. & Technoi. May 2002

An Algebraic Hardware/Software Partitioning Algorithm

QLN Shengchao (~ . ~ I]) 1, HE Jifeng (~) 2 , QIU Zongyan (~) 1

and ZHANC Naixiao (~]~)t
1 Department of Informatics, School of Mathematical Sciences, Peking University

Beijing 100871, P.R. China

2 UNU/IIST, The International Institute for Software Technology
The United Nations University, Macau, P.R. China

E-maih qinshc@pubms.pku.edu.cn; jifeng~iist.unu.edu; {zyqiu,naixiao}@pku.edu.cn

Received March 5, 2001; revised June 13, 2001.

A b s t r a c t Hardware and software co-design is a design technique which delivers com-
puter systems comprising hardware and software components. A critical phase of the co-design
process is to decompose a program into hardware and software. This paper proposes an al-
gebraic partitioning algorithm whose correctness is verified in program algebra. The authors
introduce a program analysis phase before program partitioning and develop a collection of
syntax-based splitting rules. The former provides the information for moving operations from
software to hardware and reducing the interaction between components, and the latter supports
a compositional approach to program partitioning.

Keywords hardware/software co-design, hardware/software partition, program algebra

1 I n t r o d u c t i o n

The design of a complex computerized product like a nuclear reactor control system is ideally
decomposed into a progression of the related phases. It s tarts with an investigation of the properties
and behaviors of the process evolving within its environment, and an analysis of the requirement for
its safety performance. From these is derived a specification of the electronic or program-centered
components of the system. The project then may go through a series of design phases, ending with
a program expressed in a high-level language. After being translated into the machine code of a
chosen computer, it is executed at a high speed by electronic circuitry. In order to achieve the time
performance required by the customer, additional application-specific hardware devices may be needed
to embed the computer into the system which it controls.

Industry interest in the formal verification of embedded systems is gaining ground since an error
in a widely used hardware device can have significant repercussions on the stock value of the company
concerned. In principle, the proof of correctness of a digital device can always be achieved by making
a comparison of the behavioral description of the circuit with its specification. But for a large system
this would be impossibly laborious. What we need is a useful collection of proven equations and other
theorems, which can be used to calculate, manipulate and transform the specification formulae to the
product.

Hardware/software co-design is a design technique which delivers computer systems comprising
hardware and software components. A critical phase of the co-design process is to part i t ion the speci-
fication (the source program) into hardware and software. This paper proposes a partit ioning method
whose correctness is verified using the algebraic laws developed for the high level programming lan-
guage. To meet performance goals and reduce the communication between components, our approach
combines the program analysis technique with the syntax-based splitting rules to move heavy-weight

The work is partially supported by the National Natural Science Foundation of China under grant Nos.69873003
and 69983001.

No.3 An Algebraic Hardware/Software Partitioning Algorithm 285

operations from software to hardware. The allocation of variables is also based on the data flow ana-
lysis of the source program. One of the advantages of our method is the integration of the splitting
phase with the joining phase of the partitioning process (in [1]). It optimizes the underlying target
architecture, and facilitates the reuse of hardware devices.

The algebraic approach advocated in this paper to verify the correctness of the partitioning process
has been successfully employed in the P r o C o S project on "Provably Correct Systems ''[2'a]. Sam-
paio showed how to reduce the compiler design task to one of program transformation by program
algebra [41. Ian Page et al. made rapid advance in the development of hardware compilation techniques
using an Occam-like language targeted towards Field Programmable Gate Arrays [5], and He Jifeng et
al. provided a formal verification of the hardware compilation scheme within the algebra of Occam
programs [61 .

Recently, some researchers have suggested the use of formal methods for the partitioning process [l'z'sl
Balboni et al. adopted Occam as an internal model for system exploration and partitioning strategies.
Cheung pursued the structural transformation and veritication within the functional programming
framework, tIowever, neither has provided a formal proof for the correctness of the partitioning pro-
cess. In [1], Silva et al. provided a formal strategy for carrying out the splitting phase automatically,
and presented art algebraic proof for ks correctness. However, the splitting phase delivers a large
number of simple processes, and leaves the hard task of clustering these processes into hardware and
software components to the clustering phase and the joining phase. Furthermore, additional chan-
nels and local variables introduced in the splitting phase to accommodate a huge number of parallel
processes actually increase the data flow between hardware and software components.

The remainder of this paper is organized as follows. Section 2 describes our partitioning strategy.
Section 3 introduces the programming language we adopt and explores its algebraic laws. Section
4 poses the static analysis that we perform on the source program. Section 5 investigates the un-
derlying target architecture of hardware/software components. Section 6 provides the syntax-based
hardware/software splitting rules in both bot tom-up and top-down styles.

2 P a r t i t i o n i n g S t r a t e g y

Our partitioning strategy is described as follows. Suppose a source program has been coded
by the programmer in the source programming language based on the customer's requirements. A
static analysis [9] is performed on that program to obtain useful statistical data, such as quantitative
information concerning the occurrences of expressions and variables, distributive information with
respect to those variables occurring in expressions.

Based on the analysis, the programmer marks those parts of the program that are worthy to be
implemented by hardware and leaves others to software, and as well divides the set of the variables
employed by the program to two disjoint parts. Program marking and variable division axe conducted
by the following general guidelines, where the word "busy" is explained in Section 4.

�9 Generally, busy expressions should be marked and implemented by hardware, to gain a high
performance.

�9 Analogously, busy variables should be allocated to hardware, to make high-speed access avail-
able, whereas the remaining variables and large scale data structures, such as arrays, should be
left to software, to achieve lower cost.

�9 The number of interactions between software and hardware should be minimized since they
incur high costs.

�9 In addition, the customer's demands concerning performance and cost should also be taken into
account.

We take such a marked program as the input of our hardware/software splitting process and
generate as output a program comprising two concurrent processes representing software and hardware
components respectively. We investigate a collection of synta~x~ rules to perform the splitting
task. All those rules are well-defined and their correctness is verified in the algebra of programs.

286 QIN Shengchao, HE Jifeng et al. Vol.17

They play a vital role in our partitioning algorithm and can be used to undertake the splitting task
automatically.

3 P r e l i m i n a r i e s

The language we select to perform hardware/software partit ioning is a subset of Occam which was
designed for constructing communicating systems. It consists of the following two parts.

1) Sequential Process:

S ::= PC (primitive command) [S; S (sequential composition)

I S <3 b c> S (conditional) I S F1 S (non-deterministic choice)

I b * S (iteration) I (gS) ~(gS) (guarded choice)

where PC ::= (x := e)] skip !'• c!e I c?x, and g is skip or a communication event cIe or d?x.
2) Parallel Program:

P : : = S l P l [P [v a r x � 9

In the later discussion, we adopt Var(P) and Chan(P) to denote the sets of variables and channels
employed by P.

As a subset of Occam, the language enjoys a rich set of algebraic laws presented in [10-14]. Here we
only explore those algebraic laws which will be employed within the proofs in the following sections.

Successive assignments to the same variable can be combined to one assignment.
L1 x := e; x := f = x := f[e/x] (comb ass)

Sequential composition is associative, and has left zero • and unit skip. It distributes backward
over internal and external choices and conditional.
L2 (P; Q); R = P; (Q; R)
L3 • P = l
L4 skip; P = P; skip = P
L5 (P Vl Q); R = (P; R) n (Q; R)
L6 (g P) ~ (h Q) ; R = (g (P ;R))] (h(Q;R))
L7 (P <3 b ~> Q); R = (P; R) <1 b t> (Q; R)
Assignment distributes forward over conditional.
LS v := e; (P <1 b(v) > Q) = (v := e;P) <1 b(e) t> (v := e;Q)
The input and output events can be renamed as follows.
L9 c ? x = v a r l x � 9
L10 c I e = v a r l x � 9
I teration is subject to the fixed point theorem.
L l l b , P = (P ; b * P) < a b > s k i p
Parallel operator is symmetr ic and associative, and has _L as zero.
L12 P II Q = Q M P
LI3 P II (Q II R) = (P II Q)I[R
L14 • IIP = •
Parallel operator also distributes over conditional. It is disjunctive.
L15
L16
Local
L17
L18
L19
L20
The following expansion law deals with assignment expansion.
L21 (x := e;S) I I T = x : : e ; (S I] T)

seq a88oc)
(;-zero _L)

(; - u n i t skip)
(; - I-1 distr)
(; -~ distr)

(; - cond distr)

(a s s - cond distr)

(input renaming)
(output eval)

(fixed point)

(11 comm)
(11 assoc)

([I --zero J_)

(P <1 b t> Q) I1 R = (P II R) <~ b t> (Q !1 R), provided Vat(b) A Vat(R) = 0.
(P n Q) II. R = (P II n) n (q [I R)

vaxiable declaration enjoys the following laws.
v a t x * (x := e) = skip, provided x does not occur in e. (dec skip)

v a t x �9 (P <1 b t> Q) = (va t x �9 P) <1 b c> (va t x �9 Q), provided x is not free in b. (dec-cond distr)
v a t x �9 (P; Q) = P; v a t x �9 Q, provided x is not free in P. (dec eliml)
v a t x �9 (P; Q) = vat" x �9 P; Q, provided x is not free in Q. (dec elim2)

(ll - cond distr)
(11 disj)

(ass ezp)

No.3 An Algebraic ttardware/Software Partitioning Algorithm 287

The following law is one of the general expansion laws of Occam [l~ which deals with the case where
two processes in parallel are guarded choice constructs.

r l , r r l h L 2 2 Let P = ~i=l(giPi), Q = ~ j = l (J Q J) , where each gi or hj has one of the forms c!e, cTx
or skip, then _P II Q = ~ l (k ~ R~), where the pairs (k~, Rr} are precisely all possibilities from the
following:

(i) R~ = Piil Q and (k~ = gi = skip or k,. = gi = c ! e or k~ = g~ = c? x), where c ~ Chan(Q),
(ii) R~ = P Ii Qj and (kr = hj = skip or k~ = hj = c ! e or k~ = hj = c ? x) , where c ~ Chan(P),
(iii) R~ = x := e; (Pi II Qj) and

k~ = skip and (gi =- c!e and h j = c ? x o r gi = c ? x and hj -=- c !e). (9c exp)
We explore a corollary from L22, which will be very useful in later sections.
C o r o l l a r y 3.1.
(C1) (c !e ;P)11 (c ? x ; Q) = x := e ; (P i[0.). (int comm)
(C2) Let P = (c !e; PI) , Q = (Qz; Q'z), where c E Chan(Q), but no channel in Chan(P)n Chan(Q)

occurs in Q1, then P II Q = V~; (P il Q2). (11 eli.m)
(C3) Let P = (S~; c? x; 52), and Q = (7'1; c Ie; T2), where neither 81 nor T1 mentions channels in

Chan(P) 0 Chan(Q), then P]1 Q = (S~ II T1); ((c .7 x; 5'2)II (c !~; T~)). (sync comm)
The proof of this corollary can be found in our previous papers [15'161.
We investigate two derived algebraic laws from those basic ones, which will be helpful to conduct ing

hardware/sof tware parti t ioning.
The test of condit ional should be evaluated first.
D L 1 P <l b D Q = va r lb �9 (lb := b; P <~ lb c> Q) (cond eva 0
The proof is presented in [16].
The condit ion of i teration is evaluated at the beginning of every loop.
D L 2 b �9 P = v a r lb �9 (lb := b; Ib * (P; lb := b)) (iter eval)
The following lemma from [17] will support the proof of DL2.
L e m m a 3.2. Let F, G and H be functions, and let F be a lower adjoint. If F(G) = H(F) , then

H = F (# G) .
Proof o f D L 2 Let F (X) = ~ ,,a~ lb �9 (lb := b;X), G(X) =aS (P; lb := b; X) ,~ lb ~ skip, H(X) =dS

(P; X) < b C> skip. It is direct from Lemma 3.2 and
F (G (X)) = v a r Ib �9 (tb := b; ((P; lb := b; X) < Ib ~ ,skip)) { (ass-cond distr) }

= var Ib ~ ((Ib := b; P; lb := b;X) < b ~ (Ib := b)) {(dec-cond distr)}
= (v a r lb ~ (Ib :== b; P; lb := b; X)) <3 b ~ (v a t lb ~ (lb := b)) {(dec skip)}
= (va r Ib �9 (Ib :-- b; P; lb := b; X)) <~ b ~> skip {lb is not free in P}
= (va r lb �9 (P; lb := b; lb := b; X)) <~ b ~ skip {(dec elfin1), (comb ass)}
= (P; v a r Ib. (Ib := b ;X)) <~ be> skip {clef o fF, H}
= H (F (X)) []

We int roduce an ordering relation between two programs before further discussion.
D e f i n i t i o n 3 .3 (R e f i n e m e n t) . Given programs P, Q, we say Q is a refinement of P, denoted as

P E Q, if P r~ Q = P is algebraically provable.

4 T h e S t a t i c A n a l y s i s

This section illustrates the simple static analysis performed on the source program, which pro-
rides primitive but useful information to the programmer to assist the appropriate hardware/software
marking and variable division of the source program, aiming to gain higher performance and achieve
lower cost.

First, we introduce a function depth for expressions to specify their complexity.
D e f i n i t i o n 4.1. depth: Expr ~ N is inductively defined on the structure of expressions:
depth(v) =dr 1, for any variable v,
depth(c) -=ds O, for any constant c, and
depth(op(e t , . . . , e,~)) --dr ~ i%t depth(el) + depth(op),

288 QIN Shengchao, HE Jifeng et aL Vol.17

where o p is any operator used to construct expressions in the language we adopt, and depth(op) is
defined by the programmer in accordance with the complexity of op .

An expression is regarded as a busy expression if it occurs often in the p rog ram or owns an intricate
s t ructure. We will generate a table to record the occurrence frequency of expressions.

r = { (e ,~ , (e)) le ~ Expr(S)}

where S is a program, n(e) represents the number of occurrences of the non-triviM expression e in S,
i.e., e is neither a single variable nor a constant .

The busy variable analysis produces a table q2(S) = {(v, eset(v)) I v E V a t (S) } for the program
S, where eset(v) is the se~ of expressions which contain the variable v.

Here we introduce two merge operators applied to tables of the two kinds, respectively.
D e f i n i t i o n 4.2. Let (I)i = {(e,n) I e e E~}, and ~i = {(v, eset) [v E V~}, where Ei and V~ are the

set of expressions and the set of variables of interest, for i = 1,2. We define

,~, +e ,~ = ~ { (e n) I (e n) ~ ,~, U ~ A e r E~ n E~} u { (e n, + n~) I (e ,~) ~ ' ~ i = ~ 2}

and

% + , '~2 = ~ ; { (, , eset) I (v eset) �9 e~ U ' ~ A . r Vt n V~}U

{ (v e s e q u eset2) I (~, e s e t J e # , ~ = ~ 2}

For a p rogram S, the table concerning the occurrence frequency of its expressions Te and the table
with respect to tha t of its variables T~ can be generated using the following product ive rules. The
predicate Scan used in the following is defined by

Scan(S, Te,T~) =dr T~. = ~ (S) A Tv = fiE(S).

S~an(~: :~(.) { (d .) t) } { (. { r
Sca~(~ (.) {(~(v) l)) { (. { e (.) }) })

Scan(c?z , 0, O)

Scan(S i ,~ , ,~ i) , i = 1 , 2
Scan(S1; $2, ~1 +~ ~22, "#1 +,, ~2)

Scan(Si,~5~,q2~), i = 1,2

= ~ + % + { (v {~b}) I ,, e Va,(eb)}
Scan(S1 ,~ eb C> S~, ~P, ~)

Scan(S, ~ , ~)
~ = {(~ oo) I ~ n . (cn) e ~} +~ {(eb oo)}

e ' = e + { (v {~b}) I v e Va,(~b)}
Scan(eb * S, ~', ~ ')

Scan(Si,~F~,q2i), i = 1,2
Scan(g~, cPg, , ~g,), i =- t, 2

= k~1 +~ k~2 +~ ~Jgt +. qZg2

Example 4.3. Consider the following program S.

S : ict ?u ; i c2 ? v ; w := 2 x (u + v);

oc !w; ic3 ? z; (z := u x v) <1 (z = u) ~ skip;

(~ < (, • ~)) �9 (~ := ~ + w;

:= (~ - ~) x (u + ~); oc ! ~)

where Vat(S) = {w, z, u, ~}, Chan(S) = {~c,, ic2, ic~,
oc}.

Provided depth(+) = d e p t h (-) = depth(=) =
depth(<) = 1, dep th (x) = 2, then the results of the
analysis are listed in the following two tables.

Based on the first table, one can figure out those
busy expressions. Afterward the set of variables is di-
vided into two sets, which will be al located respectively
to hardware and software, according to the criterion
tha t a variable should be al located to hardware if it
occurs in busy expressions more often than it does in
non-busy ones.

e n(e)
2 x (u + v) t

z : u 1

u X v [

u < (v x v) oo
u + w oo

(, ~ - v) x (. ,~+.) oo

depth(e)
5
3
4
6
3
8

~ e s e t

{~ + ~}

" ,,x,,,~+w(,, ,,)x(~+,~)
{ 2x(,,+~,),,~<(vx,,), }

v ~ x v (, , - , ,) x (, ~ + v)

No.3 An Algebraic Hardware/Software Partitioning Algorithm 289

The simple analysis described above provides helpful information to the programmer, whereas this
is not a must one. It is possible to impose other reasonable static analyses on the source program, such
as procedure/function analysis which yields a hardware/software marking with a large granularity.

5 T h e H a r d w a r e / S o f t w a r e T a r g e t A r c h i t e c t u r e

This section describes the target architecture of our parti t ioning approach by confining hardware
and software components to specially chosen forms. To synchronizc their activities, we introduce a
simple handshaking protocol to streamline communications between them.

Inspired by the definition of the simple two-phase handshaking protocol in CSP [ls'lsl, we construct
the handshaking protocol in the algebra of Occam.

Suppose B = {rj, a s I J E [} is a set of pairs of channels, we define the handshaking protocol as
HP(B) =dl v a r Iv �9 #X �9 (]jEl(rj ? Iv; aj ! lv; X)Iskip).

We say a sequential process S, where Chan(S) D B, satisfies the handshaking protocol HP(B), if
(S; R)]] HP(B) = (S]] HP(B)); (R n HP(B)) for any sequential process R employing the same set
of variables and channels as S.

Associated with B, we define a set of communicating processes CP(B), which is the minimal set
generated by the following rules.

(i) A communicating process C does not use any channel in B, but Chan(C) D B.
(2) rj [e; C; a t ? x, where C is a member of CP(B) not interacting via channels in B.
(3) C1; C2, or C1 [7 Cs, or C1 <~ b C> Cs, or (gl C1)] (gs C2), where both gi and Ci lie in CP(B),

for i = 1,2.

(4) b �9 C, where C is a member of CP(B).
By a simple structural induction on CP(B), it is straightforward to know processes from CP(B)

satisfy the handshaking protocol.
To simplify the interface design, we confine the interactions between hardware and software com-

ponents to the communications along the channels from set B. Our parti t ioning rules will select the
software components from set CP(B), and organize the hardware component in the form of

D = #X �9 (]jE~(rj?xj; .,VIi; ajiyj; X)]skip)

where none of M s mentions channels in B. The communicating process D represents a digital device
which offers a set of services to its environment, each of which responds to a request from its environ-
ment on an input channel r s by running the corresponding program Mj and delivering the result to
the output channel aj afterwards.

We denote as H(B) the set of those processes which own the same form as D.
T h e o r e m 5.1. (C1;Cs)II D = (Ct]I D); (C2 IID), for any C1, Cs in CP(B).
Pro@ By structural induction on C1.
(1) No channels in B appear in C1.

LHS {(II elim) }
: C1; (C2 II D) {(ll elim)}
: RHS
(2) Ct = r s [e; C; a s ? z, for some rj, aj E B, C E CP(B), and no channel in B occurs in C.

LHS
= xj := e; ((C; aj ? x; C2) II (Mj; aj !y j; D))
= xj := e; (c II Mj); ((aj ? x;Cs)II (aj ! ys; D))
= ~ := e; (C tl MS); z := YS; (Cs II D)
= RHS
(3) C1 = C01; Cos, where C01, Cos E CP(B).
From the definition of CP(B), we know C02; C2 E CP(B). Then

LHS
= (c01 II D); ((C02; Cs)II D)

{ (int nomm)}
{(sync co..~) }

{(int co.~.~)}
{ (int eo.~m), (sync co.~-~)}

{hypothesis}
{hypothesis}

290 QIN Shengchao, HE Jifeng et al. Vol.17

: (Co~ [I D); (Co2 I ID); (C2 [[D) {hypothesis}
= RHS
(4) C1 : C01 < b E> C02, or C1 = C01 R C02, or C1 : (gl Col)~(g~ Co..), where Col, Co2 E CP(B).
We only demonstrate the first case here, others are similar96].

LHS
: ((C01; C~) < b> (Co2; C"-))ii D
= ((C0~; C2) II D) < b > ((C02; C2) il D)
= ((C01 {I D); (C2 [I D)) < b E> ((C02 IID); (C~ II D))
= ((Cm II D) <3 b > (C02 il D)); (C2 II D)
= RHS
(5) C1 = b * Co, where Co E CP(B).

{ (; -cond distr) }
{(II -cond distr) }

{hypothesis}
{ (; - cond distr) }

{(11 -cond distr) }

Let F (X) : (C0;X) < b > skip, and define {Fn(_l_), n _> 0} as F ~ 1 7 7 : ~ I i , and F ~ ' - l (i) : d l
F(F'~(_t)), for n > 0. Then C, = # X �9 F (X) = ~,~>0 F~(A), and F~(J_) 6 CP(B) , for n > 0.

LHS
: ((LJn>0 F'~(-k)); C~)II D {both]1 and; are continuous}
= c2) !l D) {hypothesis}
= [_J,~>0((F'~(j-) !1 D); (C., [I D)) {both [] and; are continuous}
: RH-S []
This theorem is the theoretical foundation of the forthcoming partitioning rules. It as well indicates

that the interactions between hardware and software components are well-behaved. The following
corollary is straightforward from the theorem and also helpful in later discussions.

C o r o l l a r y 5.2. If C e CP(B), then (b * C) IID = b* (C H D).
The proof is presented in [16].

6 S y n t a x - B a s e d S p l i t t i n g R u l e s

This section is devoted to tile design of program splitting rules. First we show how the static analysis
affects the parti t ion of primitive commands into hardware and software components. Secondly we
demonstrate how to construct hardware and software parts of a construct from these of its constituents.
We establish the correctness of those rules by using the algebraic laws given in Section 3.

We introduce a predicate Split, which will be used to formalize the splitting rules.
D e f i n i t i o n 6.1 (Spl i t) . Let B = {rj ,aj [j E I}. Given a sequential process S, its hard-

ware/software partition (C, D) is specified by the following predicate:

S p l i t s (S , C , D) =dfS E_ (C II D) A C E CP(B) A D E H (B) A

Var(C) r] Var(D) : ~ A Chan(C) A Chan(D) : B A

InputChan(C) n InputChan(D) = 0 A

OutputChan(C) A OutputChan(D) = 0

We design rules in two different approaches, the bottom-up approach and the top-down one, to
undertake the splitting task. The designer can select either of them in accordance with the facility.

6.1 T h e B o t t o m - U p Sp l i t t i ng A p p r o a c h

The bottom-up approach builds the hardware component from a program directly from the static
analysis in one step, i.e., the hardware device is to provide all the services frequently used by the
program. However, it constructs the software component from its constituents using the following
rules.

Bottom-Up Rule for Sequential Composition

SplitB(Si, Ci, D), i = l, 2
Vat(S1) = War(S2), Cha74C1) = Chan(C2)

Split B (SI ; $2, C1; C2, D)

No.3 An Algebraic Hardware/Software Partitioning Algorithm 291

Pro@ $1; $2
(c1 II D); (C2 II D)

= (c1; co)II D
Bottom-Up Rule for Conditional

SplitB(S,,C~, D), i = 1,2
Var(St) = Vat(S2), Chan(Ct) = Chan(C2)

Wr(b) c_ Vat(C,)
SplitB(Sz <~ b E> $2, Ct <a b > Ce, D)

Proof. $1 "~ b C> $2
c (c , II D) <] b I> (C2 II D)
= (C1 <:1 b ~ C2) II D

Bottom-Up Rule for Iteration

SpatB(s, c, O), Vat(b) c_ Vat(C)
SplitB(b * S,b * C,D)

{; is monotonic}
(Th. 5.1}

[]

{ cond is monotonic}
{(11 - cond distr) }

[]

Proof. b* S (loop operator is monotonic}
E_ b �9 (C II D) (Corollary 5.2}
= (b , c) I I D. []

When Vat(b) rh Var(D) r 0, we will introduce a local variable lb, and rewrite the conditional and
iteration into the forms

vat lb �9 (lb := b; $1 <a Ib ~> $2) and v a t Ib �9 (lb := b; lb �9 (S; lb := b))

respectively by laws DL1 and DL2. The partitioning rule for lb := b will be discussed later. The
following rule deals with partitioning of $1 [7 $2.

Bottom-Up Rule for Non-Deterministic Choice

SpIitB(&, Ci, D), i = 1, 2
Vat(&) = Vat(&), Chan(Cl) = Cha,~(C2)

SplitB(S 1 [q 52, C: n C2, D)

Proof. St r7 $2 (~ is monotonic}
E_ (Ct II D) rq (C2 II D) {(H disj)}
= (c1 rl c2)II D []

The partitioning rule for general guarded choice constructs is presented as:
Bottom-Up Rule for Guarded Choice

SplitB(Si, Ci, D), i = 1,2
Va~(&) = Va~(&), Chan(Cl) = CAa~(C~)

Vat(g,) g Vat(C,), Cha~(gd C Chan(C1), i= 1,2
SplitB((gl $1)1(g2 $2), (gl C1)](g2 C2), D)

Proof. (91 $1)0(g2 $2) (] is monotonic}
E ((gl c~)I1 D)~((g2 C2)II D) ((gc exp)}
= ((gl C1)~(g2 C2))I[D []

6.2 T h e T o p - D o w n Sp l i t t i ng A p p r o a c h

In this approach, both hardware and software components of the source program are assembled
from those of its constituents.

Before presenting a set of top-down splitting rules, we introduce the notion of interface-consistency
for hardware components.

292 QIN Shengchao, tIE Jifeng ct al. Vol.17

D e f i n i t i o n 6.2. Let Dk =df # X . (~,e&(ri?x~;M~;a,!yi;X)~skip), for k = 1,2. DI and D2 are
said to be interface-consistent, denoted by consist(D1, D2), if

Var(D1) = Vat(D2) and Chan(D~)\B~ = Chan(D2)\B2,

where S, {rj,a F J I,}, fori = 1 , 2 .

In such a case, we define

D = union(D1, D2) =dr #X �9 (~iEiiui~(rigzi; l~fi; ai[yi; X)~skip) []

We first present a basic rule, from which and the bottom-up rules we obta in the corresponding
top-down rule s t raightforwardly in each case.

Rule for Hardware Augmenta t ion

SplitB~ (S, C, D1)
consist(D1. D2), Chan(C) N B2 C B1

SplitB~uB.. (S, C, union(D1, D'z))

Cordial readers can access the proof for ~his rule in our previous report [t6].
The following top-down rules are directly derived from the basic rule and those bottom-up rules.
Top-Down Rule for Sequential Composi t ion

SplitB,(Si,Ci,Di), i = 1,2
Var(Sl) : Var(S2), Chan(S1) = Chan(S2)

consist(D1, D~)
Split B~ jB. (S1; S.2, C1; C2, union(D1, Do))

Top-Down Rule for Conditional

Splits, (S~, C~, D~), i = l, 2
-Var(S1) = Var(Sz), Chan(S1) = Chan(S2)

consist(Dr,D2), Vat(b) (2 Vat(C,)
SplitB~,B..(Sl <a b> S'z, C1 <~ b> C2, union(D1,D~))

Top-Down Rule for Guarded Choice

SplitB,(Si,Ci,Di), i = 1,2
Vat(St)= Var(S,), Chan(S1): Chan(S2), consist(Dr,D2)

Var(gi) C Vat(C1), Chan(gi) C Chan(Cl), i = 1,2

SplitB,jZ~..((gl St)~(g2 $2), (gl C1)](g2 C2), union(D1, D2))

As a special case of the guarded choice construct , the top-down rule for non-determinist ic choice is
omi t ted here, readers can find it in [16].

6.3 Splitt ing Pr imit ive Commands

This section demons t ra tes how to par t i t ion an assignment u := e(v). We will focus on those cases
where bo th hardware and software part icipate in the evaluation of e(v) and the upda te of u.

Case 1. e(v) is a busy expression, and the variable v has been allocated to the hardware component .
SplitB(u := e(v), C, D), where
C =dr (rj ! 1; a,j ? u), and D =d! ~X * ((rj ? x; y := e(v); aj [y; X) ~ skip).

Case 2. e(v) is a busy expression, however, v has been allocated to the software component .
SplitB(u := e(v), C, D), where

C =dr (rj !v; aj ?u) , and D =dr #X �9 ((rj ?x; y := e(x); aj [y; X) I skip).
Case 3. e(v) is no t a busy expression, but v is allocated to the hardware component .

Splits(u := e(v), C, D), where
C =dr (va r Iv �9 (rj ! 1; aj ? lv; u := e(Iv))), and
D =HI ~ X * ((r~ ? x; y := v; a 5 !y; X) ~ skip).

No.3 An Algebraic Hardware/Software Partitioning Algorithm 293

More intricate case of assignment u := e(v ,w) , where v and w have respectively been allocated
to the software component and the hardware one, will be converted to several successive assignments
with the form we have dealt with above, by the algebraic law with respect to assignments.

6.4 T h e E x a m p l e R e v i s i t e d

Consider the source program S illustrated in Example 4.3. Suppose the programmer has marked
S as follows based on the resultsof the static analysis and other concerns:

S M : i c l ? u ; i c 2 ? V H ; W : = 2 • (U+VH);

oc!w; ic3 ? z; (z := u • vH) ~ (~ = ~) ~ skip;

(~ < (vH • . ~)) H * (~ := ~ + w; w := ((~ - v H) • (~ + v ~)) H ; oc !~)

where the variable v has been allocated to hardware, and as well there are two expressions (u • v,
(u - v) • (u + v)) left to hardware.

Either by the bottom-up approach or via the top-down one, we obtain the same hardware component
and the same software component as follows.

The hardware component:

reql ? x ; v := x; ackl !y

~req2 ? x; y := v; ack2 ! y

~req3?x;y := x < (v • v); ack3 !y

where B = {req~, acki] t < i < 4} is the internal channels shared by the software and hardware
components.

The software component:

icl ? u; ic2 ? Ib; reql [Iv; ackt ? la;

r e q 2 i l ; a c k 2 ? I v ; w := 2 • (u + Iv);

oc ! w; ic 3 ? z;

(~eq~ ! 1; ack2 ? Zv; z := ~ • Iv) ~ (~ = ~) > skip;

req3 [u; ack3 ? b;

b * (u := u + w; req4 ! u; ack4 ? w; oc ! w; req3 ! u; ack3 ? b)

where lv, la, b are the local variables used by the software.
It is worth noting that the software component can be optimized to a much simpler form by data

flow analysis [9] .

7 C o n c l u s i o n

This paper shows how the hardware/software partitioning problem can be tackled in the algebra of
programs. The partitioning task consists of the static program analysis phase and the splitting phase.
The former provides the information for moving operations from software to hardware and reducing the
communication between components, and the latter supports a compositional approach to program
partitioning. To synchronize software and hardware components, and to reduce the complexity of
their interface, we introduce a simple handshaking protocol, and propose a normal form for hardware
components. The correctness of the splitting process is verified using the algebraic laws of the source
language.

Our co-design approach is proposed to design embedded computer systems, which are widely used
in our daily life, by coding the source program from customers' primitive requirements, and then
transforming it to hardware and software components. It is worth noting that our approach is rather

294 QIN Shengchao, HE Jifeng et al. Vo1.17

general in the sense that it can be used in the area of program parallel ism. In our future work, we
will in t roduce t iming constraints into the source program and s t reng then the program analysis phase.
Meanwhile, our a t t en t ions will be paid to the reconfigurat ion and reusabi l i ty of hardware components
and the algebraic t ransformat ion from the hardware specification down to synthesizable normal forms.

R e f e r e n c e s

[1] Silva L, Sampaio A, Barros E. A normal form reduction strategy for hardware/software partitioning. Formal
Methods Europe (FME) 97, Lecture Notes in Computer Science 1313, 1997, pp.624-643.

[2] He Jifeng et al. Provably correct systems. Lecture Notes in Computer Science 863, 1994, pp.288-335.
[3] He Jifeng, Bowen J P. Specification, verification and prototyping of an optimised compiler. Formal Aspect of

Computing, 1994, 6: 643-658.
[4] Sampaio A. An Algebraic Approach to Compiler Design. World Scientific, 1997.
[5] Page I, Luk W. Compiling Occam into FPGAs. In FPGAs, Will Moore, Wayne Luk (eds.), Abingdon EE&CS

Books, pp.271-283, 1991.
[6] He Jifeng, Page I, Bowen J. A provable hardware implementation of Occam. Lecture Notes in Computer Science

711, 1993, pp.693-703.
[7] Balboni A et al. Partitioning and exploration strategies in the TOSCA design flow. In Proceedings of Fourth

International Workshop on Hw/sw Co-design, IEEE Computer Society Press, 1996, pp.62-69.
[8] Cheung T. A multi-level transformation approach to hardware/software co-design. In Proceedings of Fourth Inter-

national Workshop on Hw/sw Co-design, 1996, pp.10-17.
[9] Nielson F, Nielson H R, Hankin C. Principles of Program Analysis, Springer-Verlag, 1999.

[10] Roscoe A "vV, Hoare C A R. Laws of Occam programming. Theoretical Computer Science, 1988, 60: 177-229.
[11] He Jifeng. Provably Correct Systems: Modelling of Communication Languages and Design of Optimised Compilers,

McGraw-Hill Publisher, 1994.
[12] Hoare C A R. Communicating Sequential Processes, Prentice Hall, 1985.
[13] Hoare C A R et al. Laws of programming. Communications of the ACM, 1987, 30(8): 672-686.
[14] Hoare C A R, He Jifeng. Unifying Theories of Programming, Prentice Hall, 1998.
[15] Qin Shengchao, He Jifeng. An algebraic approach to hardware/software partitioning. In Proceedings of the 7th

IEEE ICECS'2K, Lebanon, December, 2000, pp.273-276.
[16] Qin Shengchao, He Jifeng. An algebraic approach to hardware/software partitioning. UNU/IIST Research Report

206, Macau, June, 2000.
[17] Mathematics of Program Construction Group. Fixed-point calculus. Information Processing Letters, 1995, 53:

131-136.
[18] He Jifeng. Converting programs into delay insensitive circuits. Technical Report, Programming Research Group,

Oxford University Computing Laboratory, 1994.

Q I N S h e n g c h a o was born in 1974. He is a Ph.D. candidate in Department of Informatics, School of
Mathematical Science, Peking University. He got his B.S. degree in the same department in 1997. His research
interests include formal methods and semantics, unifying theories to programming, and formal engineering
approaches.

H E J i f eng is a senior research fellow of UNU/IIST. He was a senior research fellow of the programming
research group, Oxford University before 1998. He is a professor of computer science in East China Normal
University since 1986, Shanghai. His research interest lies in the sound methods of specification of computer
systems, communications, application of standards, and the techniques for designing and implementing those
specifications in software and/or hardware with high reliability and low cost.

Q I U Z o n g y a n is a professor of computer science and deputy head of the Department of Informatics,
Peking University. His research interests are formal methods, programming languages, and real-time systems.

Z H A N G N a l x i a o is a professor of computer science in the Department of Informatics, Peking University.
His research interests are formal methods and domain-specific languages.

