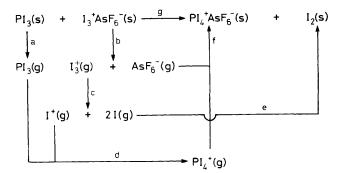
J. CHEM. SOC., CHEM. COMMUN., 1990

The Preparation and Characterization by Raman Spectroscopy of $PI_4^+AsF_6^-$ containing the Tetraiodophosphonium Cation

Inis Tornieporth-Oetting and Thomas Klapötke


Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12, F.R.G.

The thermodynamically unstable $PI_4+AsF_6^-$ containing the first and only example of a tetrahedral PI_4^+ cation, formally a derivative of the unknown PI_5 , was prepared by the reaction of PI_3 and $I_3+AsF_6^-$ at low temperatures and characterized by Raman spectroscopy.

While the phosphorus pentahalides PF₅, PCl₅, and PBr₅ are well known and fully characterized compounds^{1,2} the pentaiodide PI₅ is unknown. Although in 1978 the synthesis of PI₅ (postulated as PI₄+I⁻) was reported,³ it is more than likely that only an equimolar mixture of PI₃ and I₂ was analysed. On the basis of a simple thermodynamic cycle using a similar approach as described previously,⁴ we estimated a heat of formation from the elements for solid PI₄+I⁻ of $\Delta H^{\circ}_{\rm f}$ = +43 kcal mol^{-1†} [*cf*. $\Delta H^{\circ}_{\rm f}$, PBr₄+Br⁻ (s) estimated as -10 kcal mol⁻¹ (1 cal = 4.184 J)].[†] On the other hand a compound of the composition $PI_4^+AII_4^-$ was prepared and its crystal structure determined.⁵ In the black PI₄AlI₄ there are strong I · · · I cation · · · anion interactions ($d_{I...I} = 3.39$ —3.45 Å; sum of covalent radii: 2.66 Å,⁶ sum of van der Waals radii: 4.40 Å⁷) and the PI₄ and AlI₄ units are connected to a three-dimensional structure by weak iodine-iodine bonds (the black colour is due to electron transitions in the remaining I_2 units). In the solid state the polymeric compound might be regarded as an intermediate between PI3/I2/AlI3 and $PI_4^+AII_4^-$. We were interested to synthesize a PI_4^+ salt containing an iodine free anion to establish the existence of a binary phosphorus(v) iodine species. This is important because the conjugated base (the neutral PI₅) is still unknown and PI_4^+ would represent the first example of a binary phosphorus iodine species containing the phosphorus in its highest oxidation state.

On the basis of a simple Born-Haber cycle (Scheme 1) we showed that the reaction of I_3 +AsF₆⁻ with PI₃, leading to PI₄+AsF₆⁻ and I₂, is thermodynamically favourable (equation 1). Subsequently we identified PI₄+AsF₆⁻ from its Raman

[†] Δ*H*(1/4 P₄, s → P, g) = +75.3 kcal mol^{-1,9} IP (P, g) = +242.1 kcal mol^{-1,9} Δ*H*(I₂, s → 2 I, g) = +51.1 kcal mol^{-1,9} Δ*H*(Br₂, I → 2 Br, g) = +53.5 kcal mol^{-1,1} Δ*H*(I, g → I⁻, g) = -76.6 kcal mol^{-1,9} Δ*H*(Br, g → Br⁻, g) = -82.7 kcal mol^{-1,9} BE(P⁺ − I in PI₄⁺) = -215.2 kcal mol⁻¹ (see Scheme 1), BE (P⁺ − Br in PBr₄⁺) = -216 kcal mol⁻¹ (see Scheme 1), U_L(PI₄⁺I⁻) = -114 kcal mol⁻¹ (see Scheme 1), U_L(PI₄⁺B⁻) = -115 kcal mol⁻¹ (see Scheme 1). [BE = bond energy, IP = ionization potential.]

Scheme 1. Energy cycle for the formation of PI₄+AsF₆⁻ from PI₃ and I₃+AsF₆⁻ (all values in kcal mol⁻¹). (a) Calibrated on ΔH_{vap} :AsF₃, 8.5; PF₃, 3.9; ΔH_{sub} : AsI₃, 22.7.¹ (b) The P+-I bond energy in PI₄+, estimated as P-I bond energy in PI₃ (51.2)⁸ + 5% (2.6) (calibrated on 2 AsF₃ + 2 Cl₂, AsCl₄+AsF₆⁻ with $\Delta H = -25$; thus giving As+-Cl bond energy in AsCl₄+: -77.6, 5% greater than in AsCl₃). This gives P+-I: -53.8 in PI₄+. $\Delta H_d = -53.8 - 3$ (2.6) = -61.6. (c) Crystal lattice energy (U_L) calculated from the molecular volume (V_M in Å³) using the linear relationship: $U_L = 556.3$ (V_M)^{-0.33} + 26.3;^{10,11} V_M (PI₄+) was taken to be equal to V_M (SiI₄) = 212 Å;^{3‡} V_M (AsF₆⁻) = 105 Å.^{7,12} This gives U_L (PI₄+AsF₆⁻) = -107.9 kcal mol⁻¹.

spectrum.§ Although $PI_4^+AsF_6^-$ has sufficient stability to be isolated for a short time as a pure yellowish compound, it decomposes slowly to the thermodynamically more stable products, PF_3 (MS), AsF_3 (MS) and I_2 (Raman) (equation 2).

$$I_3^+AsF_6^-(s) + PI_3(s) \rightarrow PI_4^+AsF_6^-(s) + I_2(s)$$
 (1)

$$PI_4^+AsF_6^-(s) \to PF_3(g) + AsF_3(l) + 2I_2(s)$$
 (2)

Thus we have prepared and characterized a salt of PI_{4^+} , formally a derivative of the unknown PI_5 and the first example of a salt containing the tetrahedral PI_{4^+} cation. The decomposition of $PI_4^+AsF_6^-$ may also be described in terms of a simple thermodynamic model. The heat of formation of $PI_4^+AsF_6^-(s)$ was estimated, using an energy cycle in analogy as described previously,⁴ to be -376 kcal mol⁻¹,¹⁹ and it follows that the enthalpy change of reaction (2) is -73kcal mol⁻¹.¶ Both the formation and the decomposition of $PI_4^+AsF_6^-$ are therefore seen to be thermodynamically allowed.

In a typical reaction, $I_3^+AsF_6^-$ (1.0000 g, 1.755 mmol) was dissolved in CFCl₃. The solution was cooled to -95 °C and a cold suspension of PI₃ (0.7227 g, 1.755 mmol) in CFCl₃ was added slowly. Iodine and yellowish solid formed after the reaction mixture had been held at 0 °C for 10 min. The product

View Article Online

was washed with cold CFCl₃ and traces of remaining iodine were removed under dynamic vacuum, leaving a light yellowish solid, the Raman spectrum of which showed PI₄⁺ to be present.§ The part of the spectrum assigned to PI₄⁺ consists of three strong bands (the low intensity v₃ mode was not observed) which are very similar in intensity and relative position to those observed for PBr₄⁺ (v₁, 254; v₂, 116; v₄, 148 cm⁻¹),^{15–17} PCl₄⁺ (v₁, 458; v₂, 178; v₄, 255 cm⁻¹),¹⁸ and (the isoelectronic) SiI₄ (v₁, 168; v₂, 62; v₄, 91 cm⁻¹),¹⁴ and is consistent with its possessing T_d geometry. The totally symmetric v₁ stretching mode was expected to appear as the strongest line at 192 cm⁻¹ [estimated according to; v₁(MI) = 0.42 v₁(MCl)]¹³ and observed at 193.5 cm⁻¹ (100%).

Unfortunately, despite several experiments we were not able to find a solvent for PI_4 +AsF₆⁻ and therefore no single crystals for a low temperature X-ray structure determination could be obtained. PI_4 +SbF₆⁻ was synthesized from IF, SbF₅, and PI_3 but it is less stable than PI_4 +AsF₆⁻.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We are grateful to Dr. Hunnius and Ms. Maier of the Freie Universität Berlin for Raman experiments.

Received, 27th September 1989; Com. 9/04151F

References

- 1 'Comprehensive Inorganic Chemistry,' eds. J. C. Bailar, H. J. Emeleus, R. Nyholm, and A. F. Trotman-Dickenson, Pergamon Press, Oxford, 1973.
- 2 N. N. Greenwood and A. Earnshaw, 'Chemistry of the Elements,' Pergamon Press, Oxford, 1984.
- 3 N. G. Feshchenko, V. G. Kostina, and A. V. Kirsanov, J. Gen. Chem., 1978, 48, 195.
- 4 T. Klapötke, J. Passmore, and E. G. Awere, J. Chem. Soc., Chem. Commun., 1988, 1426.
- 5 S. Pohl, Z. Anorg. Allg. Chem., 1983, 498, 15.
- 6 E. Fluck and E. Heumann, 'Periodensystem der Elemente,' VCH Verlagsgesellschaft, Weinheim, 1985.
- 7 N. Burford, J. Passmore, and J. C. P. Sanders, 'Molecular Structure and Energetics,' eds. J. F. Liebman and A. Greenberg, vol. 11, VCH Verlagsgesellschaft, Weinheim, 1989.
- 8 R. Steudel, 'Chemie der Nichtmetalle,' Walter de Gruyter, Berlin, New York, 1974.
- 9 D. A. Johnson, 'Some thermodynamic aspects of inorganic chemistry,' Cambridge University Press, Cambridge, 1982.
- 10 T. E. Mallouk, G. L. Rosenthal, G. Müller, R. Brusasco, and N. Bartlett, *Inorg. Chem.*, 1984, 23, 3167.
- 11 T. L. Richardson, F. L. Tarzella, and N. Bartlett, J. Am. Chem. Soc., 1986, 108, 4937.
- 12 K. Seppelt, Angew. Chem., Int. Ed. Engl., 1976, 15, 377.
- 13 K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1986.
- 14 R. J. H. Clark and T. J. Dines, Inorg. Chem., 1980, 19, 1681.
- 15 M. Delahaye, P. Dhamelincourt, and J. C. Merlin, C. R. Acad. Sci., Ser. B, 1971, 272, 370.
- 16 W. Gabes and H. Gerding, Recl. Trav. Chim., 1971, 90, 157.
- 17 W. Gabes, K. Olie, and H. Gerding, Recl. Trav. Chim., 1972, 91, 1367.
- 18 P. Van Huong and B. Desbat, Bull. Soc. Chim. Fr., 1972, 2631.
- 19 See ref. 6 and Scheme 1. ΔH°_{f} (AsF₆⁻, g) = -471.4 kcal mol^{-1,9,10,20}
- 20 I. Barin, O. Knackle, and O. Kubauchewski, 'Thermodynamic Properties of Inorganic Substances,' Springer-Verlag, Berlin, 1977.

 $[\]ddagger$ Calculated from $d_{(SiI_4, xtl.)} = 4.198 \text{ g cm}^{-3}$.

[§] Raman spectrum of $PI_4^+AsF_6^-$. Spex 1403, Spectra Physics krypton laser, exciting line: 647 nm, 20 mW, 20 °C. 28.0, 44.0 (lattice vibrations); 71.0 (v₂, PI₄+); 89.0 (v₄, PI₄+); 108.5 (v₂, PI₃); 193.5 (v₁, PI₄+); 212.0 (v, I₂); 309.0 (v₃, PI₃). The intensity of all peaks due to impurities (PI₃) is less than 10%.

 $[\]label{eq:phi} \int \Delta H^\circ_{\rm f}({\rm PF}_3,{\rm g}) = -219.8~{\rm kcal}~{\rm mol}^{-1}, {}^{10}~\Delta H^\circ_{\rm f}({\rm AsF}_3,{\rm l}) = -228.8~{\rm kcal}~{\rm mol}^{-1}.{}^{12}$