

Tetrahedron: Asymmetry 11 (2000) 2471-2482

TETRAHEDRON: ASYMMETRY

Stereocontrolled preparation of 2-,3- and 4-isothiocyanato aldopyranose derivatives

Jose Fuentes,* David Olano, Consolación Gasch and M. Angeles Pradera

Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain

Received 13 April 2000; accepted 25 May 2000

Abstract

The regio- and stereocontrolled introduction of an isothiocyanato group into the positions 2, 3 and 4 of glycopyranose derivatives starting from glycosides, glycosylamines, and aminosugars is reported. Isothiocyanato sugars with D-gluco, D-allo and D-manno configurations have been prepared. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Of the sugar isothiocyanates, the glycosyl derivatives are the most well-known compounds, and have been widely used in different syntheses of glycoconjugates, whose sugar moiety is a mono-saccharide to trisaccharide glycosyl radical.¹ In recent years, various synthetic methods for both pyranoid^{1c,2} and furanoid³ glycosyl isothiocyanates have been reported. However, the data on the introduction of an NCS group onto a non-glycosydic position of a sugar,⁴ onto a polyol chain,⁵ or onto the secondary positions of sugar moieties of *C*-nucleosides⁶ are limited, in spite of the interest of deoxy-isothiocyanato derivatives in the preparation of guanidinosugars,⁵ macrocycles,⁷ several glycomimetics,^{1c,8} and pseudonucleosides.^{4c} Frequently, there are problems of formation of mixtures of diastereomers,^{1c} or of reactions between the NCS group and a neighbouring hydroxyl group^{6c} in the described synthetic methods for deoxy-isothiocyanato sugars.

In this paper we report on the stereocontrolled introduction of an isothiocyanato group into different secondary positions of D-glycopyranose rings. We have chosen, as carbohydrate derivatives, glycosides, and glycosylamines, potentially useful for glycoconjugates and macrocycles syntheses, and as configurations, D-gluco, D-allo and D-manno. The stereocontrol is based mainly on the use of $S_N 2$ reactions.

^{*} Corresponding author. E-mail: jfuentes@cica.es

2. Results and discussion

For the introduction of the NCS group onto the position 4 of a D-glucopyranose ring, we have started from the α -methyl-D-galactopyranoside derivative 1,⁹ and from the partially *O*-benzoylated- β -D-galactopyranosylamine derivative 8¹⁰ (Scheme 1). Conventional *O*-benzoylation with benzoyl chloride of 1 gave the di-*O*-benzoylderivative 2. The regioselective ring opening of the 4,6-acetal ring of 2 with sodium cyanoborohydride in DMF and trifluoroacetic acid produced the partially *O*-protected D-galactoglycoside 3. The chemical shifts for the resonances of H-2 and H-3 in compounds 2 and 3 were in agreement with the presence of the benzoyl groups (see Table 1 and Experimental). The IR spectrum of 3 showed the OH band at 3300 cm⁻¹, and the corresponding ¹H NMR spectrum had the signal for H-4 at 4.45 ppm (CHOH), and the value for $J_{4,5}$ was roughly 0 Hz, as is described¹¹ for related D-galactopyranosyl derivatives.

Reagents and conditions. (i) ClBz/Py, rt; (ii) NaCNBH₃/TFA, 0°C; (iii) ClMs, rt; (iv) NaN₃, 60-70 °C; (v) H₂/Pd/C, rt; (vi) Cl₂CS, rt.

	1-2	3-7	8-12
\mathbf{R}^{1}	<i>p</i> -MeOC ₆ H ₄	<i>p</i> -MeOC ₆ H ₄ CH ₂	Bz
\mathbb{R}^2	-	OMe	Н
R^3	-	Н	NH-CH=C(CO ₂ Et) ₂
			Scheme 1.

Treatment of the D-galactopyranosyl compounds **3** and **8**, with the hydroxyl group on C-4 being free, with mesyl chloride gave, in good yield, the corresponding 4-methanesulphonyl esters **4** and **9**, which by reaction with sodium azide in hexamethylphosphoramide (HMPT) at $60-70^{\circ}$ C produced the 4-azido-4-deoxyglucopyranosyl compounds **5** and **10** in high yield. No appreciable elimination products were observed in the formation of **5** and **10**, nor were compounds coming from the internal nucleophilic attack of the NH (enamino group) on C-4¹¹ formed in the case of **10**. Catalytic hydrogenation of **5** and **10** produced the 4-aminosugars **6** and **11**, which by reaction with thiophosgene in a basic medium gave the 4-deoxy-4-isothiocyanatoglucoside **7** or glucosylenamine **12**, respectively.

The structures of compounds 4–7 and 9–12 were supported by analytical and spectroscopic data. The chemical shifts for the resonances of H-4 in compounds 4 and 9 showed a downfield

	δ(ppm)								_	$J_{\rm H,H}({\rm Hz})$				
	H-2	H-3	H-4	H-5	C-2	C-3	C-4	C-5	NCS		1,2	2,3	3,4	4,5
2 ^a	5.78		4.64	3.89	69.0	69.0	74.1	62.0	-		1.6	-	1.2	-
3 ⁵	5.72-5.	66	4.45	4.13	69.0	71.0	69.2	68.1	-		3.2	-	-	0.2
4 ^b	5.59	5.78	5.45	4.31	68.4	68.2	76.6	67.0	-		3.6	10.9	3.0	-
5 ^ь	5.21-5.16	5.91	4.04	3.93-3.79	71.9	70.9	60.3	69.2	-		-	-	10.0	10.0
7 ⁵	5.13	5.98	4.32	4.01	71.4	70.3	56.4	69.3	138.1		3.6	10.1	10.1	10.1
9⁵	5.78	5.59	5.49	4.35	68.3	71.0	74.2	72.2	-		8.9	10.4	3.1	0.6
10ª	5.38	5.70	3.89	3.78	71.1	73.4	60.5	74.4	-		9.5	9.5	9.5	9.5
12 ^b	5.45	5.87	4.27-4.24	3.99	70.9	72.9	57.1	74.6	141.3		9.5	9.5	9.5	10.1
14 ⁶	4.96	3.81	4.95	3.73	73.6	72.9	70.2	73.5	-		9.0	9.0	10.0	10.0
16 ⁵	4.96	4.46	4.93	4.14-4.10	69.4	60.7	66.9	71.2	-		9.1	3.2	3.2	10.0
18 ⁶	4	4.91-4.8	б	4.13	68.3	58.1	66.0	71.6	141.7		8.8	-	-	9.9
21 ^b	3.86	5.34	5.29	4.08	58.9	69.5	65.0	70.6	-		2.0	3.7	9.3	9.3
22ª	3.94	5.09	5.23	3.83	59.4	71.7	64.8	73.2	-		1.3	3.8	9.8	9.8
24 ^b	4.26	5.28	5.39	4.05	57.5	69.2	64.9	70.7	140.2		2.0	4.0	10.0	10.0

Table 1 Relevant NMR data for compounds 2-7, 9-12, 14, 16, 18, 21, 22 and 24 in CDCl₃

^a300MHz for ¹H, 75.4 MHz for ¹³C. ^b500 MHz for ¹H, 125.7 MHz for ¹³C.

shift of ≈ 1 ppm when they were compared with the same signal for **3** and **8**, supporting the formation of the sulphonic ester. Compounds 5 and 10 had the IR absorption at $\approx 2100 \text{ cm}^{-1}$ for the azido group, and the vicinal coupling constants values $J_{3,4}$ and $J_{4,5}$, roughly 10 Hz, supported the formation of the D-glucopyranosyl ring. The presence of the isothiocyanato group in 7 and 12 was based on the IR band at \approx 2041 cm⁻¹, and on the NMR resonances at \approx 140 (NCS), \approx 57 (C-4), and 4.30 ppm (H-4), which are characteristic^{1c} of the isothiocyanato-sugars.

A suitable starting material to prepare 3-deoxy-3-isothiocyanato-D-allopyranosylamines is the *N*-protected D-glucopyranosylamine 13^{10} (Scheme 2). The regioselective acetylation of 13 with acetic anhydride and pyridine, using a molar ratio 1:3 (13: Ac₂O) at -20°C, produced a mixture of acetylated products, whose NMR spectra showed that the 2,4,6-tri-O-acetyl 14 and 2,3,6-tri-Oacetyl derivatives are the preponderant compounds. After the mixture was boiled in ethyl ether, transacylation took place and 14 was obtained as sole crystalline product. Its IR spectra had the

Scheme 2. Reagents and conditions. (i) Ac₂O/Py, -20°C; (ii) Tf₂O/Py, -15°C; (iii) NaN₃, rt; (iv) H₂/Pd/C, rt; (v) Cl₂CS, rt

OH band at 3420 cm⁻¹, and the resonance for H-3 appeared at 3.81 ppm, showing a coupling between H-3 and the hydroxyl group of 5.0 Hz.

Treatment of 14 with trifluoromethanesulphonic anhydride gave the 3-O-trifyl-D-glucopyranosylamine derivative 15. The C-3 configuration of 15 was inverted by reaction with sodium azide, producing the 3-azido-3-deoxy-D-allopyranosylamine 16. Catalytic [Pd(OH)₂] hydrogenation of the latter gave the amino derivative 17. This was directly reacted with thiophosgene to produce the 3-deoxy-3-isothiocyanato-D-allopyranosylamine derivative 18.

The spectroscopic data of **16** supported both the introduction of the azido group (IR absortion at 2130 cm⁻¹, and H-3 and C-3 resonances at 4.46 and 60.7 ppm, respectively) and the *D-allo* configuration ($J_{2,3} = J_{3,4} = 3.2$ Hz). In the case of compound **18**, the presence of the NCS group was confirmed by the ¹³C resonances at 141.7 (NCS) and 58.1 ppm (C-3), and by the IR band at 2047 cm⁻¹ (NCS).

As the 2-amino-2-deoxy monosaccharides are the most readily available aminosugars, to introduce an isothiocyanato group into the position 2 of the D-mannopyranose ring we started from 2-amino-2-deoxy-D-mannose hydrochloride 19 (Scheme 3). The reaction of this aminosugar with diethyl ethoxymethylene malonate produced the N-protected D-mannosamine 20, with an α : β ratio of 3:1. Acetylation of 20 with acetic anhydride gave a mixture of the tetra-O-acetylderivatives anomers 21 and 22, the α : β anomers ratio being 4:1. This mixture was resolved by column chromatography to obtain the α (21, 41%) and β (22, 11%) anomers as pure products. The following reactions were performed on the major α anomer. The NMR spectra of compounds 20-22 contained the characteristic^{1b} signals of the enamino group (see Experimental); the $J_{1,2}$ value for the α -anomer **21** (2.0 Hz) and for the β -anomer **22** (1.3 Hz) were very close to that described¹² for related pairs of anomers with D-manno configuration. In all the compounds having the enamino group (9, 10, 12, 14, 16, 18, 21 and 22), the δ values for NH (9.18–9.62 ppm), for a CO₂Et group (167.4–168.4, C=O chelated) and the IR absorptions at 1650–1670 cm⁻¹ (C=O chelated) were indicative¹³ of the hydrogen bond shown in Fig. 1. The $J_{1,\text{NH}}$ ($J_{2,\text{NH}}$ for 21 and 22) value of these compounds was in the range 8.9–9.9 Hz, indicating *trans* relationship between the corresponding protons (Fig. 1).

Scheme 3. Reagents and conditions. (i) EtOCH=C(CO₂Et)₂, Na₂CO₃, rt; (ii) Ac₂O/Py, -20° C; (iii) Cl₂/CH₂Cl₂, 0° C; (iv) Cl₂CS, rt

Figure 1. Conformation of the CH-NH bond

The *N*-deprotection of **21** with chlorine in dichloromethane yielded the *O*-acetylated aminosugar **23**, which by reaction with thiophosgene produced the 2-deoxy-2-isothiocyanato D-manno derivative **24** with a 75% overall yield from **21**. The NCS group of **24** was evident from the IR absorption at 2062 cm⁻¹, and from the resonances of NCS (140.2 ppm), C-2 (57.5 ppm), and H-2 (4.26 ppm). All the vicinal coupling constant values of the mannopyranose ring were indicative¹² that, in solution in chloroform, the ⁴C₁ conformation is little distorted, in spite of the presence of the polar NCS group in axial disposition on C-2.

3. Conclusion

For the regio- and stereocontrolled introduction of an isothiocyanato group into secondary positions of glycopyranose rings, the reaction of O-protected aminosugar derivatives with thiophosgene is a useful method. In the case of the position 2, it is possible to start from a commercial product, whereas in the cases of the positions 3 and 4 the amino group is introduced via sulphonyloxy and azido derivatives using $S_N 2$ reactions. The method is potentially useful for the preparation of diisothiocyanato derivatives when an additional enamino group exists (12), as this group is a latent NCS group (sequence 20–24).

4. Experimental

4.1. General methods

Melting points are uncorrected. Optical rotations were measured for solutions in dichloromethane. FTIR spectra were recorded for KBr discs or thin film. ¹H NMR spectra (500 or 300 MHz) were obtained for solutions in CDCl₃ or MeOH- d_4 . Assignments were confirmed by homonuclear 2D COSY correlated experiments. ¹³C NMR spectra were recorded at 125.7 or 75.4 MHz. Heteronuclear 2D correlated spectra were obtained in order to assist in carbon resonance assignments. Mass spectra (EI and FAB) were recorded with a Kratos MS-80RFA and Micro-mass AutoSpecQ instruments with a resolution of 1000 or 10 000(10% valley definition). For the FAB spectra, ions were produced by a beam of xenon atoms (6–7 KeV), using 3-nitrobenzyl alcohol and thioglycerol as matrix and NaI as salt. TLC was performed on silica gel HF₂₅₄, with detection by UV light or charring with H₂SO₄. Silica gel 60 (Merck, 70–230 and 230–400 mesh) was used for preparative chromatography.

4.2. Methyl 2,3-di-O-benzoyl-4,6-O-(4-methoxybenzylidene)- α -D-galactopyranoside 2

To a stirred solution of methyl 4,6-*O*-(4-methoxybenzylidene)-α-D-galactopyranoside 1⁹ (0.719 g, 2.3 mmol) in pyridine (3.7 ml) at 0°C benzoyl chloride (0.92 ml, 7.1 mmol) in pyridine (3.3. ml) was added dropwise. The mixture was stirred for 12 h at rt and then poured into ice-water (500 ml) and extracted with CH₂Cl₂. The extracts were washed with H₂SO₄ (2N), aq. NaHCO₃ (saturated) and water, dried (MgSO₄), and concentrated. Column chromatography (2:1 Et₂O:petroleum ether) on silica gel gave **2** (1.140 g, 95%) as an amorphous solid. $[\alpha]_D^{27}$ +209.6 (*c* 1.8); FABMS: *m/z* 543 [M+Na]⁺; ¹H NMR (300 MHz, CDCl₃): δ 8.03–6.87 (m, 14H, Ar), 5.78 (m, 2H, H-2, H-3), 5.53 (s, 1H, CH-Ar), 5.29 (d, 1H, $J_{1,2}$ =1.6, H-1), 4.64 (d, 1H, $J_{3,4}$ =1.2, H-4), 4.34 (dd, 1H, $J_{5,6a}$ =1.6, $J_{6a,6b}$ =12.5, H-6a), 4.13 (dd, 1H, $J_{5,6b}$ =1.7, H-6b), 3.89 (m, 1H, H-5), 3.81 (s, 3H, CH₃O-Ar), and 3.47 (s, 3H, CH₃O) ppm; ¹³C NMR (125.7 MHz): δ 166.0, 165.8 (2 CO), 159.8–113.3 (18 C, Ar), 100.5 (CH), 97.9 (C-1), 74.1 (C-4), 69.0 (2 C, C-2, C-3), 68.7 (C-6), 62.0 (C-5), 55.5 and 55.1 (2 CH₃O) ppm. Anal. calcd for C₂₉H₂₈O₉: C, 66.91; H, 5.42. Found: C, 66.83; H, 5.58.

4.3. Methyl 2,3-di-O-benzoyl-6-O-(4-methoxybenzyl)- α -D-galactopyranoside 3

To a solution of **2** (0.957 g, 1.84 mmol) and Na(CN)BH₃ (0.578 g, 9.2 mmol) in DMF (17 ml) over 4 Å molecular sieves at 0°C, a solution of 0.1% F₃CCOOH in DMF (14 ml) was added dropwise. After 7 h at rt the reaction mixture was filtered through Celite, poured into ice-aq. NaHCO₃ (saturated) and extracted with CH₂Cl₂. The organic layer was washed with cool aq. NaHCO₃ (saturated), dried (MgSO₄) and concentrated. The residue was purified by chromato-graphy (CH₂Cl₂) to yield **3** (0.637 g, 67%) as an amorphous solid. [α]_D²⁷ +103.3 (*c* 1.2); FABMS: *m*/*z* 545 [M+Na]⁺; IR ν_{max} 3300 cm⁻¹ (HO); ¹H NMR (500 MHz, CDCl₃); δ 8.03–6.87 (m, 14H, Ar), 5.72–5.66 (m, 2H, H-2, H-3), 5.22 (d, 1H, *J*_{1,2}=3.2, H-1), 4.57, 4.52 (each d, each 1H, *J*_{H,H}=11.6, CH₂), 4.45 (bs, 1H, H-4), 4.13 (m, 1H, H-5), 3.85–3.78 (m, 2H, H-6a, H-6b), 3.80 (s, 3H, CH₃O-Ar) and 3.43 (s, 3H, CH₃O) ppm; ¹³C NMR: δ 165.9, 165.7 (2 CO), 159.3–113.8 (18 C, Ar), 97.6 (C-1), 73.4 (CH₂) 71.0 (C-3), 69.7 (C-6), 69.2 (C-4), 69.0 (C-2), 68.1 (C-5), 55.4 and 55.1 (2 CH₃O) ppm. Anal calcd for C₂₉H₃₀O₉: C, 66.66; H, 5.79. Found: C, 66.29; H, 6.21.

4.4. Procedure for mesylation of 3 and 8

To a stirred solution of **3** (0.48 g, 0.92 mmol) or **8** (0.2 g, 0.3 mmol) in pyridine (x ml) at 0°C mesyl chloride (y ml) was gradually added. The mixture was kept for t h at rt, then poured into ice-water and extracted with CH_2Cl_2 . The combined organic layers were washed with H_2SO_4 (2N), aq. NaHCO₃ (saturated) and water, dried (MgSO₄) and concentrated. The residue was purified as described.

4.4.1. Methyl 2,3-di-O-benzoyl-4-O-mesyl-6-O-(4-methoxybenzyl)- α -D-galactopyranoside 4

x = 27 ml; y = 0.2 ml; t = 13 h. Column chromatography (CH₂Cl₂) gave **4** (0.49 g, 90%) as an amorphous solid. $[\alpha]_D^{27}$ +118.5 (*c* 1.0); FABMS: m/z 623 [M+Na]⁺; ¹H NMR (500 MHz, CDCl₃): δ 8.03–6.88 (m, 14H, Ar), 5.78 (dd, 1H, $J_{2,3} = 10.9$, $J_{3,4} = 3.0$, H-3), 5.59 (dd, 1H, $J_{1,2} = 3.6$, H-2), 5.45 (d, 1H, H-4), 5.16 (d, 1H, H-1), 4.55, 4.49 (each d, each 1H, $J_{H,H} = 11.1$, CH₂), 4.31 (m, 1H, H-5), 3.81 (s, 3H, CH₃O-Ar), 3.70–3.68 (m, 2H, H-6a, H-6b), 3.44 (s, 3H, CH₃O) and 3.02 (s, 3H, Ms) ppm; ¹³C NMR (125.7 MHz): δ 165.8, 165.5 (2 CO), 159.2–113.7 (18 C, Ar), 97.3 (C-1),

76.6 (C-4), 73.2 (CH₂), 68.4 (C-2), 68.2 (C-3), 67.2 (C-6), 67.0 (C-5), 55.6, 55.1 (2 CH₃O) and 23.6 (Ms) ppm. Anal. calcd for $C_{30}H_{32}O_{11}S$: C, 59.99; H, 5.37; S, 5.34. Found: C, 60.12; H, 5.08; S, 5.10.

4.4.2. 2,3,6-Tri-O-benzoyl-4-O-mesyl-N-(2,2-diethoxycarbonylvinyl)-β-D-galactopyranosylamine **9** x = 5 ml; y = 0.07 ml; t = 14 h. Column chromatography (1:1 AcOEt:petroleum ether) gave **9** (0.20 g, 88%) as an amorphous solid. [α]_D²⁶ +1.8 (c 1.1); FABMS: m/z 762 [M+Na]⁺; IR v_{max} 1663 cm⁻¹ (C=O chelated); ¹H NMR (500 MHz, CDCl₃): δ 9.46 (dd, 1H, J_{NH,HC=} = 13.1, J_{NH,1} = 8.9, NH), 8.07–7.35 (m, 15H, Ar), 7.98 (d, 1H, HC=), 5.78 (dd, 1H, J_{1,2} 8.9, J_{2,3} = 10.4, H-2), 5.59 (dd, 1H, J_{3,4} = 3.1, H-3), 5.49 (dd, 1H, J_{4,5} = 0.6, H-4), 4.82 (t, 1H, H-1), 4.71 (dd, 1H, J_{5,6a} = 6.0, J_{6a,6b} = 11.3, H-6a), 4.43 (dd, 1H, J_{5,6b} = 7.5, H-6b), 4.35 (m, 1H, H-5), 4.28 (m, 2H, CH₂CH₃), 4.15 (q, 2H, J_{H,H} = 7.1, CH₂CH₃), 3.14 (s, 3H, Ms), 1.33 and 1.25 (t, 6H, 2 CH₂CH₃) ppm; ¹³C NMR (125.7 MHz): δ 167.5, 165.8, 165.4, 165.2, 165.1 (5 CO), 157.0 (HC=), 133.6–128.1 (18 C, Ar), 95.0 (C=), 87.5 (C-1), 74.2 (C-4), 72.2 (C-5), 71.0 (C-3), 68.3 (C-2), 61.2 (C-6), 60.2, 59.9 (2 CH₂CH₃), 38.8 (Ms) and 14.1 (2 C, 2 CH₂CH₃) ppm. Anal. calcd for C₃₆H₃₇O₁₄NS: C, 58.45; H, 5.04; N, 1.89; S, 4.33. Found: C, 58.49; H, 5.29; N, 1.97; S, 4.46.

4.5. Procedure for the displacement of MsO group with sodium azide (5,10)

To a stirred solution of the corresponding sulphonyloxysugar 4, 9 (*m* g) in HMPT (*x* ml), sodium azide (*y* g) was added. The mixture was kept for *t* h at $T^{\circ}C$, then poured into ice-water and extracted with AcOEt. The combined organic layers were washed with water, dried (MgSO₄) and concentrated. The residue was purified by column chromatography.

4.5.1. Methyl 4-azido-2,3-di-O-benzoyl-4-deoxy-6-O-(4-methoxybenzyl)- α -D-glucopyranoside 5

m = 0.375 g, 0.625 mmol; x = 5.5 ml; y = 0.203 g, 3.12 mmol; t = 13 h; $T = 60^{\circ}$ C. Column chromatography (1:4 AcOEt:petroleum ether) gave **5** (0.300 g, 93%) as an amorphous solid. $[\alpha]_D^{26}$ +177.8 (*c* 0.7); FABMS: m/z 570 [M+Na]⁺; IR ν_{max} 2108 cm⁻¹ (N₃); ¹H NMR (300 MHz, CDCl₃): δ 8.03–6.91 (m, 14H, Ar), 5.91 (m, 1H, H-3), 5.21–5.16 (m, 2H, H-1, H-2), 4.68, 4.55 (each d, each 1H, $J_{H,H} = 11.6$, CH₂), 4.04 (t, 1H, $J_{3,4} = J_{4,5} = 10.0$, H-4), 3.93–3.79 (m, 3H, H-5, H-6a, H-6b), 3.82 (s, 3H, CH₃O-Ar) and 3.41 ppm (s, 3H, CH₃O-C₁); ¹³C NMR (125.7 MHz): δ 165.7, 165.5 (2 CO), 159.3–113.8 (18 C, Ar), 97.1 (C-1), 73.3 (CH₂), 71.9 (C-2), 70.9 (C-3), 69.2 (C-5), 67.9 (C-6), 60.3 (C-4), 55.5 and 55.2 (2 CH₃O) ppm. Anal calcd for C₂₉H₂₉O₈N₃: C, 63.61; H, 5.34; N, 7.67. Found: C, 63.38; H, 5.37; N, 7.40.

4.5.2. 4-Azido-2,3,6-tri-O-benzoyl-4-deoxy-N-(2,2-diethoxycarbonylvinyl)-β-D-glucopyranosylamine 10

m = 0.1 g, 0.135 mmol; x = 1.2 ml; y = 0.044 g, 0.68 mmol; t = 12 h; $T = 70^{\circ}$ C. Column chromatography (7:1 toluene:AcOEt) gave **10** (0.086 g, 92%) as an amorphous solid. $[\alpha]_D^{20}$ +6.4 (*c* 0.6); FABMS: m/z 709 [M+Na]⁺; IR ν_{max} 2112 (N₃) and 1660 cm⁻¹ (C=O chelated); ¹H NMR (300 MHz, CDCl₃): δ 9.31 (dd, 1H, $J_{NH,1} = 9.5$, $J_{NH,CH} = 13.1$, NH), 8.06–7.19 (m, 15H, Ar), 7.87 (d, 1H, HC=), 5.70 (t, 1H, $J_{2,3} = J_{3,4} = 9.5$, H-3), 5.38 (t, 1H, $J_{1,2} = 9.5$, H-2), 4.70 (t, 1H, H-1), 4.64 (dd, 1H, $J_{5,6a} = 2.3$, $J_{6a,6b} = 12.3$, H-6a), 4.58 (dd, 1H, $J_{5,6b} = 3.8$, H-6b), 4.18, 4.06 (each q, each 2H, $J_{H,H} = 7.1$, 2 CH₂CH₃), 3.89 (t, 1H, $J_{4,5} = 9.5$, H-4), 3.78 (ddd, 1H, H-5), 1.23 and 1.16 (each t, each 3H, 2 CH₂CH₃) ppm; ¹³C NMR (75.4 MHz): δ 167.4, 166.0, 165.4, 165.2 (5 C, 5 CO), 157.1 (CH=), 133.6–128.1 (18 C, Ar), 95.0 (C=), 87.4 (C-1), 74.4 (C-5), 73.4 (C-3), 71.1 (C-2), 62.9

(C-6), 60.5 (C-4), 60.2, 60.0 (2 CH_2CH_3), 14.2 and 14.1 (2 CH_2CH_3) ppm. Anal. calcd for $C_{35}H_{34}O_{11}N_4$: C, 61.22; H, 4.99; N, 8.16. Found: C, 61.00; H, 4.86; N, 7.86.

4.6. Procedure for the reduction of the azido group 6,11

The corresponding azidosugar 5, 10 (*m* g) was dissolved in distilled MeOH (*x* ml) and hydrogenated in the presence of palladium-on-charcoal (*y* g) for *t* h at rt and \approx 1 atm. The catalyst was filtered off through a Celite pad, and washed with methanol. The filtrate and washings were combined and evaporated to give a syrup which was used without purification in the next step.

4.6.1. Methyl 4-amino-2,3-di-O-benzoyl-4-deoxy-6-O-(4-methoxybenzyl)- α -D-glucopyranoside 6 m = 0.224 g, 0.44 mmol; x = 5 ml; y = 0.022 g; t = 6 h. TLC (1:6) AcOEt:petroleum ether; FABMS: m/z 544 [M+Na]⁺.

4.6.2. 4-Amino-2,3,6-tri-O-benzoyl-4-deoxy-N-(2,2-diethoxycarbonylvinyl)-β-D-glucopyranosylamine 11

m = 0.2 g, 0.29 mmol; x = 5 ml; y = 0.02 g; t = 10 h. TLC (2:1) AcOEt:petroleum ether; FABMS: m/z 683 [M+Na]⁺.

4.7. General method for isothiocyanato derivatives 7, 12

To a heterogeneous mixture of the corresponding glycopyranosylamine (6, 11, x g), dichloromethane (y ml), calcium carbonate (z g), and water (y ml), thiophosgene (k ml) was added. The mixture was vigorously stirred for t h and then filtered. The organic layer was washed with water, dried (MgSO₄), concentrated and the residue was purified as indicated. The following compounds were prepared in this manner.

4.7.1. Methyl 2,3-di-O-benzoyl-4-deoxy-4-isothiocyanato-6-O-(4-methoxybenzyl)- α -D-glucopyrano-side 7

x = 0.213 g, 0.41 mmol; y = 6.5 ml; z = 0.16 g, 1.64 mmol; k = 0.08 ml, 0.82 mmol; t = 6 h. TLC (1:2) AcOEt:petroleum ether (0.121 g, 51% from **6**); $[\alpha]_D^{27}$ +116.8 (*c* 1.0); FABMS: m/z 586 [M+Na]⁺; IR v_{max} 2043 cm⁻¹ (NCS); ¹H NMR (500 MHz, CDCl₃): δ 8.01–6.92 (m, 14H, Ar), 5.98 (t, 1H, $J_{2,3} = J_{3,4} = 10.1$, H-3), 5.17 (d, 1H, $J_{1,2} = 3.6$, H-1), 5.13 (dd, 1H, H-2), 4.65, 4.54 (each d, each 1H, $J_{H,H} = 11.7$, *H*CH, HC*H*), 4.32 (t, 1H, $J_{4,5} = 10.1$, H-4), 4.01 (ddd, 1H, $J_{5,6a} = 3.0$, $J_{5,6b} = 2.0$, H-5), 3.82 (s, 3H, CH₃O-Ar), 3.79 (dd, 1H, $J_{6a,6b} = 11.2$, H-6a), 3.75 (dd, 1H, H-6b) and 3.42 (s, 3H, CH₃O) ppm; ¹³C NMR (125.7 MHz): δ 165.6, 165.2 (2 CO), 159.3–113.7 (18 C, Ar), 138.1 (NCS), 97.1 (C-1), 73.3 (CH₂), 71.4 (C-2), 70.3 (C-3), 69.3 (C-5), 67.6 (C-6), 56.5 (C-4), 55.5 and 55.1 (2 CH₃O) ppm. Anal. calcd for C₃₀H₂₉O₈NS: C, 63.93; H, 5.19; N, 2.48; S, 5.69. Found: C, 63.74; H, 4.96; N, 2.58; S, 6.21.

4.7.2. 2,3,6-Tri-O-benzoyl-4-deoxy-N-(2,2-diethoxycarbonylvinyl)-4-isothiocyanato- β -D-gluco-pyranosylamine **12**

x = 0.192 g, 0.29 mmol; y = 1.4 ml; z = 0.084 g, 0.848 mmol; k = 0.042 ml, 0.424 mmol; t = 5 h. TLC (1:1) ether:petroleum ether (0.111 g, 55% from 11); $[\alpha]_D^{27}$ +6.9 (*c* 0.5); FABMS: *m/z* 725 [M+Na]⁺; IR ν_{max} 2041 (NCS), and 1651 cm⁻¹ (C=O chelated); ¹H NMR (500 MHz, CDCl₃): δ 9.39 (dd, 1H, $J_{NH,1} = 9.0$, $J_{NH,CH=} = 13.0$, NH), 8.12–7.37 (m, 15H, Ar), 7.88 (d, 1H, HC=), 5.87

(t, 1H, $J_{2,3} = J_{3,4} = 9.5$, H-3), 5.45 (t, 1H, $J_{1,2} = 9.5$, H-2), 4.81 (t, 1H, H-1), 4.73 (dd, 1H, $J_{5,6a} = 2.5$, $J_{6a,6b} = 12.4$, H-6a), 4.64 (dd, 1H, $J_{5,6b} = 4.1$, H-6b), 4.27–4.24 (m, 3H, H-4, CH_2CH_3), 4.14 (q, 2H, $J_{H,H} = 7.1$, CH_2CH_3), 3.99 (ddd, 1H, $J_{4,5} = 10.1$, H-5), 1.31 and 1.24 (each t, each 3H, 2 CH₂CH₃) ppm; ¹³C NMR (125.7 MHz): δ 167.5, 166.0, 165.5, 165.4, 165.3 (5 CO), 157.2 (CH=), 141.3 (NCS), 133.7–128.5 (18 C, Ar), 95.1 (C=), 87.2 (C-1), 74.6 (C-5), 72.9 (C-3), 70.9 (C-2), 62.9 (C-6), 60.4, 60.1 (2 CH_2CH_3), 57.1 (C-4) and 14.4 (2 C, 2 CH_2CH_3) ppm. Anal. calcd for $C_{36}H_{34}O_{11}N_2S$: C, 61.53; H, 4.88; N, 3.99; S, 4.56. Found: C, 61.42; H, 4.75; N, 4.14; S, 4.84.

4.8. 2,4,6-Tri-O-acetyl-N-(2,2-diethoxycarbonylvinyl)-β-D-glucopyranosylamine 14

To a stirred solution of N-(2,2-diethoxycarbonylvinyl)- β -D-glucopyranosylamine (3 g, 8.55 mmol) in pyridine (15 ml) at -20°C, acetic anhydride (2.5 ml, 26.7 mmol) in pyridine (10 ml) was gradually added. The mixture was kept for 24 h at that temperature, then poured into ice-water and extracted with AcOEt. The combined organic layers were washed with H_2SO_4 (2N), aq. NaHCO₃ (saturated) and water, dried ($MgSO_4$) and concentrated. Column chromatography (40:1 CH₂Cl₂:MeOH) of the crude gave 2,3,6- and 2,4,6-tri-O-acetylderivatives as a mixture. The treatment of the mixture with Et_2O at reflux gave 14 (2.260 g, 57%) as a solid. Mp 140–142°C; $[\alpha]_D^{28}$ +8.5 (c 1.3); FABMS: m/z 498 [M+Na]⁺; IR ν_{max} 1670 cm⁻¹ (C=O chelated); ¹H NMR (500 MHz, CDCl₃); δ 9.22 (dd, 1H, $J_{NH,1}$ = 9.0, $J_{NH,HC}$ = 13.0, NH), 7.95 (d, 1H, HC=), 4.96 (t, 1H, $J_{1,2} = J_{2,3} = 9.0, \text{ H-2}$, 4.95 (t, 1H, $J_{3,4} = J_{4,5} = 10.0, \text{ H-4}$), 4.47 (t, 1H, H-1), 4.29–4.19 (m, 5H, H-1) 6a, 2 CH₂CH₃), 4.14 (dd, 1H, J_{5,6b} = 2.2, J_{6a,6b} = 12.4, H-6b), 3.73 (ddd, 1H, J_{5,6a} = 4.6, H-5), 3.81 (ddd, 1H, J_{3.OH} = 5.0, H-3), 2.13, 2.11, 2.10 (each s, each 3H, 3 Ac), 1.33 and 1.29 (each t, each 3H, J_{H,H} = 7.1, 2 CH₂CH₃) ppm; ¹³C NMR (125.7 MHz): δ 170.5 (2 C, 2 CO), 170.1, 167.5, 165.6 (3 CO), 157.3 (HC=), 94.5 (C=), 86.8 (C-1), 73.6 (C-2), 73.5 (C-5), 72.9 (C-3), 70.2 (C-4), 61.7 (C-6), 60.2, 60.0 (2 CH₂CH₃), 20.6, (Ac), 20.5 (2 C, 2 Ac), 14.2, and 14.0 (2 CH₂CH₃) ppm. Anal. calcd for C₂₀H₂₉O₁₂N: C, 50.52; H, 6.15; N, 2.95. Found: C, 50.50; H, 6.06; N, 3.04.

4.9. 2,4,6-Tri-O-acetyl-N-(2,2-diethoxycarbonylvinyl)-3-O-triflyl-β-D-glucopyranosylamine 15

Trifluoromethanesulphonic anhydride (0.21 ml, 0.13 mmol) in pyridine (0.1 ml) was added dropwise to a solution of **3** in freshly distilled CH_2Cl_2 (10 ml), and stirred for 2 h at -15°C. Then the reaction mixture was poured into cool aq. NaHCO₃ (saturated), extracted with CH_2Cl_2 , dried (MgSO₄), and concentrated. FABMS: m/z 630 [M+Na]⁺. This product was directly used to prepare **16**.

4.10. 2,4,6-Tri-O-acetyl-3-azido-3-deoxy-N-(2,2-diethoxycarbonylvinyl)-β-D-allopyranosylamine 16

This was prepared using the same procedure described for **5** and **10**. m = 0.639 g, 1.053 mmol; x = 7.2 ml; y = 0.34, 5.2 mmol; t = 1 h; T = rt. Column chromatography (1:1 ether:petroleum ether) of the residue and crystallisation of the product (0.515 g, 98%) from EtOH gave **16**; mp 139–140°C; $[\alpha]_{D}^{25}$ +17.0 (c 0.8); FABMS: m/z 523 [M+Na]+; IR v_{max} 2130 (N₃), and 1659 cm⁻¹ (C=O chelated); ¹H NMR (500 MHz, CDCl₃): δ 9.18 (dd, 1 H, $J_{\text{NH,CH}} = 13.1$, $J_{\text{NH,1}} = 9.1$, NH), 7.96 (d, 1H, HC=), 4.96 (dd, 1H, $J_{1,2} = 9.1$, $J_{2,3} = 3.2$, H-2), 4.93 (dd, 1H, $J_{4,5} = 10.0$, $J_{3,4} = 3.2$, H-4), 4.82 (t, 1H, H-1), 4.46 (t, 1H, H-3), 4.28–4.19 (m, 5H, H-6a, 2 CH₂CH₃), 4.17–4.13 (m, 1H, H-6b), 4.14–4.10 (m, 1H, H-5), 2.14, 2.12, 2.09 (each s, each 3H, 3 Ac) and 1.37–1.26 (m, 6H, 2 CH₂CH₃) ppm; ¹³C NMR (125.7 MHz): δ 170.5, 169.3, 169.2, 167.9, 165.4 (5 C, 5 CO), 157.6 (CH=), 94.3

(C=), 84.1 (C-1), 71.2 (C-5), 69.4 (C-2), 66.9 (C-4), 61.8 (C-6), 60.7 (C-3), 60.2, 60.0 (2 CH_2CH_3), 20.6, 20.4, 20.3 (3 Ac), 14.2, and 14.1 (CH_2CH_3) ppm. Anal. calcd for $C_{20}H_{28}O_{11}N_4$: C, 48.00; H, 5.64; N, 11.20. Found: C, 47.84; H, 5.68; N, 10.70.

4.11. 2,4,6-Tri-O-acetyl-3-amino-3-deoxy-N-(2,2-diethoxycarbonylvinyl)-β-D-glucopyranosylamine 17

A stirred solution of **16** (0.2 g, 0.042 mmol) in (2:3) dioxane:EtOH (10 ml) was hydrogenated in the presence of $Pd(OH)_2$ for 2.5 h at 4 atm. The catalyst was filtered off through a Celite pad, and washed with ethanol. The filtrate and washings were combined, and evaporated to give a syrup which was used without purification in the next step. FABMS: m/z 497 [M+Na]⁺.

4.12. 2,4,6-Tri-O-acetyl-3-deoxy-N-(2,2-diethoxycarbonylvinyl)-3-isothiocyanato-β-D-allopyranosylamine 18

This was prepared following the procedure described for 7 and 12. x=0.190 g, 0.4 mmol; y=6.5 ml; z=0.16 g, 1.6 mmol; k=0.08 ml, 0.8 mmol; t=15 h. TLC (12:1) ether:petroleum ether (0.090 g, 44% from 16); $[\alpha]_D^{25}$ –19.7 (c 1.0); FABMS: m/z 539 [M+Na]⁺; IR ν_{max} 2047 (NCS) and 1663 cm⁻¹ (C=O chelated); ¹H NMR (500 MHz, CDCl₃): δ 9.24 (dd, 1H, $J_{NH,CH=}=13.0$, $J_{NH,1}=8.9$, NH), 7.98 (d, 1H, HC=), 4.91–4.86 (m, 3H, H-2, H-3, H-4), 4.82 (t, 1H, $J_{1,2}=8.8$, H-1), 4.34–4.19 (m, 6H, H-6a, H-6b, 2 CH₂CH₃), 4.13 (ddd, 1H, $J_{4,5}=9.9$, $J_{5,6a}=2.1$, $J_{5,6b}=4.2$, H-5), 2.15, 2.13, 2.10 (each s, each 3H, 3 Ac), 1.33 and 1.31 (each t, each 3H, $J_{H,H}=7.1$, 2 CH₂CH₃) ppm; ¹³C NMR (125.7 MHz): δ 170.3, 169.1, 169.0, 167.9, 165.2 (5 CO), 157.4 (CH=), 141.7 (NCS), 94.6 (C=), 84.3 (C-1), 71.6 (C-5), 68.3 (C-2), 66.0 (C-4), 61.6 (C-6), 60.2, 60.0 (2 CH₂CH₃), 58.1 (C-3), 20.5, 20.4, 20.3 (3 Ac), 14.2 and 14.0 (CH₂CH₃) ppm. Anal. calcd for $C_{21}H_{28}O_{11}N_{2}S$: C, 48.83; H, 5.46; N, 5.42. Found: C, 48.74; H, 5.51; N, 5.75.

4.13. 2-Deoxy-N-(2,2-diethoxycarbonylvinyl)amino-D-mannopyranose 20

To a stirred solution of D-mannosamine hydrochloride (0.25 g, 1.4 mmol) and sodium carbonate (0.074 g, 0.7 mmol) in water (1.2 ml), diethyl ethoxymethylenemalonate (0.56 ml, 2.8 mmol) was added and the mixture was stirred for 24 h at rt. The water was evaporated under reduced pressure. The residue was purified by column chromatography (6:1 CH₂Cl₂:MeOH) to yield **13** (0.33 g, 68%) as an amorphous solid. FABMS: m/z 372 [M+Na]⁺; ¹³C NMR (125.7 MHz, MeOH- d_4): δ 170.0, 166.8 (each 2 C, 4 CO), 162.6 (HC= β), 161.6 (HC= α), 94.6 (C-1 β), 94.4 (C-1 α), 90.4 (C= α), 90.2 (C= β), 78.8 (C-5 β), 74.1 (C-5 α), 73.9 (C-3 β), 70.6 (C-3 α), 69.3 (C-4 α), 69.0 (C-4 β), 66.1 (C-6 β), 65.1 (C-6 α), 62.8 (2 C, C-2 α , C-2 β), 60.9–60.8 (4 C, 4 CH₂CH₃) and 14.8–14.7 (4 C, 4 CH₂CH₃) ppm. Anal. calcd for C₁₄H₂₃O₉N: C, 48.13; H, 6.64; N, 4.01. Found: C, 48.19; H, 6.94; N, 3.86.

4.14. 1,3,4,6-Tetra-O-acetyl-2-deoxy-N-(2,2-diethoxycarbonylvinyl)amino- α -D-mannopyranose 21 and 1,3,4,6-tetra-O-acetyl-2-deoxy-N-(2,2-diethoxycarbonylvinyl)amino- β -D-mannopyranose 22

Compound **20** (0.25 g, 0.716 mmol) was dissolved in (1:1) acetic anhydride: Py (2.5 ml) at 0°C. The mixture was stirred at rt for 18.5 h, then poured into ice-water and extracted with ether. The combined organic layers were washed with H_2SO_4 (2N), aq. NaHCO₃ (saturated) and water,

dried (MgSO₄) and concentrated. The residue was purified by column chromatography (1:1 ether:petroleum ether) to give compounds 21 and 22 as amorphous solids.

Compound **21** (0.154 g, 41%); $[\alpha]_D^{26}$ –97.1 (*c* 1.0); FABMS: *m/z* 540 [M+Na]⁺; IR ν_{max} 1657 cm⁻¹ (C=O chelated); ¹H NMR (500 MHz, CDCl₃): δ 9.56 (dd, 1H, $J_{NH,CH=}$ =13.2, $J_{NH,2}$ =9.9, NH), 7.83 (d, 1H, HC=), 6.19 (d, 1H, $J_{1,2}$ =2.0, H-1), 5.34 (dd, 1H, $J_{2,3}$ =3.7, $J_{3,4}$ =9.3, H-3), 5.29 (t, 1H, $J_{4,5}$ =9.3, H-4), 4.25 (q, 2H, $J_{H,H}$ =7.1, CH₂CH₃), 4.21–4.18 (m, 4H, H-6a, H-6b, CH₂CH₃), 4.08 (dt, 1H, $J_{5,6a}$ = $J_{5,6b}$ =3.2 Hz, H-5), 3.86 (ddd, 1H, H-2), 2.20, 2.19, 2.08, 2.06 (each s, each 3H, 4 Ac), 1.35 and 1.28 (each t, each 3H, 2 CH₂CH₃) ppm; ¹³C NMR (125.7 MHz): δ 170.7, 170.1, 169.0, 168.7, 168.0, 165.4 (6 CO), 158.8 (CH=), 92.7 (C=), 91.5 (C-1), 70.6 (C-5), 69.5 (C-3), 65.0 (C-4), 61.1 (C-6), 60.0, 59.8 (2 CH₂CH₃), 58.9 (C-2), 20.7, 20.5, 20.4, 20.3 (4 Ac), 14.3 and 14.2 (2 CH₂CH₃) ppm. Anal. calcd for C₂₂H₃₁O₁₃N: C, 51.06; H, 6.04; N, 2.71. Found: C, 50.97; H, 6.20; N, 2.73.

Compound **22** (0.037 g, 11%); $[\alpha]_D^{26}$ –142.8 (*c* 0.6); FABMS: *m*/*z* 540 [M+Na]⁺; IR ν_{max} 1659 cm⁻¹ (C=O chelated); ¹H NMR (300 MHz, CDCl₃): δ 9.62 (dd, 1H, $J_{NH,CH=}$ = 13.2, $J_{NH,2}$ = 9.6, NH), 7.83 (d, 1H, HC=), 5.88 (d, 1H, $J_{1,2}$ = 1.3, H-1), 5.23 (t, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.8, H-4), 5.09 (dd, 1H, $J_{2,3}$ = 3.8, H-3), 4.29–4.15 (m, 6H, H-6a, H-6b, 2 C H_2 CH₃), 3.94 (ddd, 1H, H-2), 3.83 (ddd, 1H, $J_{5,6a}$ = 3.6, $J_{5,6b}$ = 2.6, H-5), 2.17, 2.12, 2.08, 2.05 (each s, each 3 H, 4 Ac), 1.35 and 1.28 (each t, each 3H, $J_{H,H}$ = 7.1, 2 CH₂CH₃) ppm; ¹³C NMR (75.4 MHz): δ 170.7, 169.9, 169.1, 168.7, 168.4, 165.8 (6 CO), 159.4 (CH=), 92.3 (C=), 90.3 (C-1), 73.2 (C-5), 71.7 (C-3), 64.8 (C-4), 61.1 (C-6), 59.9, 59.7 (2 CH₂CH₃), 59.4 (C-2), 20.7, 20.5, 20.4 (4 C, 4 Ac), 14.3 and 14.2 (2 CH₂CH₃) ppm. HREIMS calcd for C₂₂H₃₁O₁₃N: 517.1795. Found: 517.1825.

4.15. 1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-α-D-mannopyranose 23

Compound **22** (0.05 g, 0.097 mmol) was dissolved in Cl_2/CH_2Cl_2 (1 ml) at 0°C for 30 min. The solvent was evaporated under reduced pressure to give a syrup which was used without purification in the next step. FABMS: m/z 370 [M+Na]⁺.

4.16. 1,3,4,6-Tetra-O-acetyl-2-deoxy-2-isothiocyanato- α -D-mannopyranose 24

This was prepared following the same procedure described for **7**, **12**, and **18**. x = 0.034 g, 0.097 mmol; y = 2 ml; z = 0.050 g, 0.50 mmol; k = 0.03 ml, 0.3 mmol; t = 6 h. TLC (3:1) ether:petroleum ether (0.028 g, 75% from **21**); $[\alpha]_D^{26} -28.8$ (*c* 1.7); FABMS: m/z 412 [M+Na]⁺; IR v_{max} 2062 cm⁻¹ (NCS); ¹H NMR (500 MHz, CDCl₃): δ 6.18 (d, 1H, $J_{1,2} = 2.0$, H-1), 5.39 (t, 1H, $J_{3,4} = J_{4,5} = 10.0$, H-4), 5.28 (dd, 1H, $J_{2,3} = 4.0$, H-3), 4.26 (dd, 1H, H-2), 4.24 (dd, 1H, $J_{5,6b} = 4.1$, $J_{6a,6b} = 12.5$, H-6a), 4.15 (dd, 1H, $J_{5,6b} = 2.4$, H-6b), 4.05 (ddd, 1H, H-5), 2.17, 2.13, 2.12 and 2.07 (each s, each 3H, 4 Ac) ppm; ¹³C NMR (125.7 MHz): δ 170.6, 170.0, 169.0, 167.9 (4 CO), 140.2 (NCS), 91.0 (C-1), 70.7 (C-5), 69.2 (C-3), 64.9 (C-4), 61.4 (C-6), 57.5 (C-2), 20.7, 20.6 and 20.5 (4 C, 4 Ac) ppm. HREIMS calcd for C₁₃H₁₅O₇NS: 329.0569. Found: 329.0562.

Acknowledgements

We thank the Dirección General de Enseñanza Superior e Investigaciones Científicas of Spain for financial support (grant number PB97/0730), and Bioalava for the samples of 2-amino-2-deoxy-D-mannose and for the award of a fellowship to D.O.G. This work is part of the European Programme COST D13, action number D13/0001/99.

References

- For leading references, see: (a) Guenther, W.; Kunz, H. Angew. Chem. 1990, 102, 1068–1069. (b) Fuentes, J.; Molina, J. L.; Olano, D.; Pradera, M. A. Tetrahedron: Asymmetry 1996, 7, 203–218. For a review, see: (c) García Fernández, J. M.; Ortiz Mellet, C. Sulfur Reports 1996, 19, 61–169. See also: (d) Fuentes, J.; Molina, J. L.; Pradera, M. A. Tetrahedron: Asymmetry 1998, 9, 2517–2532. (e) Jiménez-Blanco, J. L.; Saitz Barria, C.; Benito, J. M.; Ortiz Mellet, C.; Fuentes, J.; Santoyo-González, F.; García Fernández, J. M. Synthesis 1999, 1907–1914.
- 2. Lindhorst, T. K.; Kieburg, Ch. Synthesis 1995, 1228-1230.
- (a) Marino, C.; Varela, O.; Lederkremer, R. M. Carbohydr. Res. 1997, 304, 257–260. (b) Marino, C.; Varela, O.; Lederkremer, R. M. Tetrahedron 1997, 53, 16009–16016.
- (a) For introduction of the NCS group into the position 3 of glycofuranoses, see: García Fernández, J. M.; Ortiz Mellet, C.; Jiménez-Blanco, J. L.; Fuentes, J. J. Org. Chem. 1994, 59, 5565–5572. (b) For the position 5 of glycofuranoses, see: Jiménez-Blanco, J. L.; Díaz Pérez, V. M.; Ortiz Mellet, C.; Fuentes, J.; García Fernández, J. M.; Díaz Arribas, J. C.; Cañada, F. J. Chem. Commun. 1997, 1969–1970. (c) For the position 2 of methyl-D-glucopyranoside, see: Fernández-Bolaños, J. G.; Zafra, E.; López, O.; Robina, I.; Fuentes, J. Tetrahedron: Asymmetry 1999, 10, 3011–3023. (d) For the position 4 of a O-benzylated methylglucopyranoside, see: Knapp, S.; Naughton, A. B. J.; Dahr, T. G. M. Tetrahedron Lett. 1992, 33, 1025–1029. (e) For the primary position of methyl aldopyranosides, see: García Fernández, J. M.; Ortiz Mellet, C.; Fuentes, J. J. Org. Chem. 1993, 58, 5192–5199. (f) For a disaccharide derivative, see: Pradera, M. A.; Molina, J. L.; Fuentes, J. Tetrahedron 1995, 51, 923–934.
- 5. Jeong, J. H.; Murray, B. W.; Takayama, S.; Wong, Ch-H. J. Am. Chem. Soc. 1996, 118, 4227-4234.
- 6. Fuentes, J.; Angulo, M.; Pradera, M. A. Communicated at the 10th European Carbohydrate Symposium. Galway, Ireland, July 1999. Communication PA109, Book of Abstracts p. 247.
- García Fernández, J. M.; Jiménez-Blanco, J. L.; Ortiz Mellet, C.; Fuentes, J. J. Chem. Soc., Chem. Commun. 1995, 57–58.
- 8. Jiménez-Blanco, J. L.; Ortiz Mellet, C.; Fuentes, J.; García Fernández, J. M. Chem. Commun. 1996, 2077-2078.
- 9. Johansson, R.; Samuelson, B. J. Chem Soc., Perkin Trans. 1 1984, 2371-2374.
- Fuentes Mota, J.; García Fernández, J. M.; Ortiz Mellet, C.; Pradera Adrián, M. A.; Babiano Caballero, R. Carbohydr. Res. 1989, 188, 35–44.
- 11. Fuentes, J.; Olano, D.; Pradera, M. A. Tetrahedron: Asymmetry 1997, 8, 3443-3456 and references cited therein.
- 12. Stevens, J. D. Communicated at the XVIth International Carbohydrate Symposium. Paris, France, July 1992. Communication C-158. Book of Abstracts p. 623.
- Gómez Sánchez, A.; García Martín, M. G.; Borrachero Moya, P.; Bellanato, J. J. Chem. Soc., Perkin Trans. 2 1987, 301–306.