
SULPHUR SUBSTITUTED ORGANOTIN COMPOUNDS. PART 6. REACTIONS OF MERCAPTOMETHYLTIN COMPOUNDS WITH ARENESULPHENYL CHLORIDES¹

> James L. Wardell^{*} and Robin D. Taylor Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

Summary: Reactions between Ph₃SnCH₂SAr and 2-NO₂C₆H₄SCL lead to the formation of 2-(ArSCH₂)-6-NO₂C₆H₃SSC₆H₄NO₂-2 via the [2,3] signatropic rearrangement of the S-arylthiosulphonium ylides CH₂-\$(Ar)SC₆H₄NO₂-2.

Gassman and Miura² recently reported, in this Journal, reactions between arenesulphenyl chlorides and (methylthiomethyl)trimethylsilane, equation (1). Of particular interest was the compound

(I). The formation of (I) was considered to involve a spontaneous [2,3] sigmatropic rearrangement (step iii in the Scheme) of S-arylthiosulphonium ylide (II, R'=Me).

Scheme M=Sior Sn

Gassman and Muira's report has prompted us to publish similar findings with organotin compounds, Ph₃SnCH₂SAr. From Ph₃SnCH₂SPh and 2-NO₂C₆H₄SCL, for example, compound (III) could be isolated in good yield. Clearly similar mechanisms (Scheme) must operate for the organotin system as for the organosilicon ones.

A typical experiment was conducted with Ph β nCH₂SPh (8.0 g, 0.017 mole) and 2-NO₂C₆H₄SCL (4.4 g, 0.023 mole) in carbon tetrachloride. After refluxing 1 hour, the solvent was removed to leave an oily solid. A little cold chloroform was added and the yellow solid (III) was collected and recrystallised from chloroform/hexane; yield 2.1 g, m.p. 126-129°C. Anal. Found: C, 53.3, H, 3.6, N, 6.3, S, 22.0%. Calcd. for C₁₉H₁₄O₄N₂S₃: C, 53.6, H, 3.3, N, 6.5, S, 22.3%. ¹H NMR (60 MHz) in CDCL₃: δ (CH₂) 4.48 2H(s), δ (aryl) 7.20-8.25 12H(m). Mass

Many other products were also present, including Ph₃SnCl and (\underline{o} -NO₂C₆H₄S)₂. We have further shown that (III) is a labile material. Thus refluxing the unsymmetric disulphide, (III), in ethanol solution for 2 hours led to the formation of symmetric disulphide, (2-NO₂C₆H₄S)₂ and a compound, C₂₆H₂₀N₂O₄S₄, m.p. 99°C, which we consider to be the other symmetric disulphide, (IV). [Anal. C, 56.5, H, 3.8, N, 4.7, S, 22.4%. Calcd. for C₂₆H₂₀N₂O₄S₄: C, 56.6, H, 3.6, N, 5.1, S, 22.8%. ¹H NMR (60 MHz) in CDCl₃: δ (CH₂) 4.22 2H(s); δ (aryl) 7.20-7.60 9H(m). Mass spectrum (70 eV): m/e 552(M)(0.5%), 276(35%)]. Of interest, a different work-up procedure of the Ph₃SnCH₂SPh/2-NO₂C₆H₄SCl reaction, namely one using t.l.c. on alumina plates, gave significant amounts of (IV) and (<u>o</u>-NO₂C₆H₄S)₂. It would appear that the unsymmetrical disulphide, (III), disproportionates on alumina.

Other organotin substituted sulphonium salts have been shown by Peterson to give rise to ylides, e.g. $Bu_3SnCH_2SMe_2$, I (from Bu_3SnSMe and MeI) spontaneously provides CH_2SMe_2 and Bu_3SnI . Thus halides, CL^{-} and I, are sufficiently nucleophilic to cleave the carbon-tin bonds in sulphonium salts. In contrast, the sulphonium salt, $Bu_3SnCH_2SMe_2$, $MeSO_4^{-}$ is stable; this is a consequence of $MeSO_4^{-}$ being insufficiently nucleophilic.

Reactions of sulphenyl halides, RSCL, with organotin compounds have been previously reported.^{5,6} Only the more reactive tin-carbon bonds such as allylic tin bonds are readily cleaved by RSCL. Tin bonds to phenyl and simple alkyl groups are normally unaffected by such reagents in the absence of a catalyst.

- ¹ Part 5. J.L. Wardell and J.M. Wigzell, J. Organomet. Chem., 1981, 205, C24.
- ² P.G. Gassman and T. Muira, *Tetrahedron Lett.*, 1981, 4787.
- ³ The chemical shifts of the protons *ortho* to the two NO₂ groups in (IV) are not too low field of (and hence separated from) the remainder of the aryl protons as is the case with (III) and also with PhSCH₂SC₆H₄NO₂-2. We assume that in (IV) the favoured conformation has the nitroaryl ring close to the PhSCH₂ group and that an interaction between these groups occurs.
- ⁴ D.J. Peterson, J. Organomet. Chem., 1971, 26, 215.
- ⁵ J.L. Wardell and S. Ahmed, J. Organomet. Chem., 1974, 78, 395.
- ⁶ A.N. Kashin, N.A. Bumagin, I.P. Beletskaya, and O.A. Reutov, J. Org. Chem. USSR, Engl. Trans., 1980, 16, 2190.

(Received in UK 12 February 1982)

spectrum: m/e 430(M⁺)(0.3%), 276(90%).