Synthesis and structural characterization of a tetrahedral sp³ carbide cluster compound

Yoshiaki Takahashi, Munetaka Akita* and Yoshihiko Moro-oka*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

Treatment of the $(\mu_3$ -halomethylidyne)tricobalt cluster compound $(\mu_3$ -X–C)Co₃(CO)₆L₃ with Na[Ru(η -C₅H₅)(CO)₂] produces the heptanuclear $(\mu_5$ -C)(η -C₅H₅)₂Ru₂-Co₄Hg(CO)₁₃ 2 [X = Br; L₃ = (CO)₃] and tetranuclear carbide cluster compound $(\eta$ -C₅H₅)(CO)₂Ru(μ_4 -C)Co₃-(CO)₆(tdpm) 4 [X = Cl; L₃ = CH(PPh₂)₃ (tdpm)], *via* substitution of μ_3 -X–C; the latter complex 4 is the first example of a structurally characterized tetrahedral sp³ carbide cluster compound.

Transition-metal carbide cluster compounds have been studied extensively over twenty years as model compounds for a carbide species adsorbed on a metal surface.^{1,2} Previous studies have revealed various aspects of such a species as a pivotal intermediate in catalytic transformations of hydrocarbons and carbon monoxide (e.g. conversion to CH_x species through H-addition).³ However, the carbido carbon atoms in the previous examples are partly or completely encapsulated in a metal array such as butterfly and octahedral structures.¹ To the best of our knowledge, no example of a structurally characterized carbide cluster compound with an sp3-hybridized carbido carbon atom has been reported so far,4,5 although it would be the most probable structure that an organic chemist expects. Our research interest has been focused on synthetic study toward polymetallic compounds with a simple carbon linkage such as permetallated ethane, ethene and ethyne,⁶ and herein we report the synthesis of the first structurally characterized example of a tetrahedral sp3 carbide cluster compound, a permetallated methane.

The synthetic method that we have employed is nucleophilic substitution of the classical (μ_3 -halomethylidyne)tricobalt cluster derivatives, (μ_3 -X–C)Co₃(CO)₆L₃,⁷ by a metal anion.^{5a,8} When the (μ_3 -bromomethylidyne)nonacarbonyl derivative, (μ_3 -Br–C)Co₃(CO)₉ **1** [X = Br; L₃ = (CO)₃] was treated with the ruthenate, Na[Ru(η -C₅H₅)(CO)₂], in thf, a heptanuclear carbide cluster compound (μ_5 -C)(η -C₅H₅)₂Ru₂Co₄Hg(CO)₁₃ **2** was obtained in low yield (*ca.* 10%) by way of replacement of Br and addition of metal fragments (Scheme 1).† The molecular structure determined by X-ray crystallography (Fig. 1) contains a carbido carbon atom which is encapsulated in the pentanuclear

Scheme 1

RuCo₄ wingtip-bridged butterfly structure.[‡] Interaction of one of the two Ru–Co edges with the $[HgRu(\eta-C_5H_5)(CO)_2]^+$ fragment, which is isolobal with H+, causes slight elongation of the Ru(1)–Co(1) bond [2.937(2) Å; cf. Ru(1)–Co(4) 2.837(3) Å] owing to a three-center-two-electron interaction. Judging from the Co(1)–C(1)–Co(4) [165.0(10)°] and M_{ax} –C(1)– M_{eq} angles $[82-99^{\circ}: M_{ax} = Co(1), Co(4)]$, the coordination structure of the central carbido carbon atom can be described as distorted trigonal bipyramidal with a Ru(1)-Co(2)-Co(3) equatorial plane. This type of (µ₅-C)M₅ structure has several precedents.⁸ The mechanism of formation of 2 should involve initial nucleophilic substitution of 1 with the ruthenate giving a tetrahedral carbide intermediate, which picks up $Co(CO)_n$ and $[HgRu(\eta-C_5H_5)(CO)_2]^+$ fragments present in a reaction mixtures to form the electron-precise species 2 with 76 cluster valence electrons (the wingtip-bridged butterfly RuCo₄ core). The formation of 2 suggests susceptibility of the μ_3 -CBr moiety in 1 toward nucleophilic substitution, and similar reactions affording encapsulated carbide cluster compounds have already been reported.9

In order to prevent the tricobalt unit from fragmentation and cluster core expansion, the three cobalt atoms were linked together by a tripodal ligand, tris(diphenylphosphino)methane (tdpm). Treatment of the μ_3 -chloromethylidyne cluster supported by tdpm, (μ_3 -Cl–C)Co₃(CO)₆(tdpm) **3** [X = Cl; L₃ = tdpm],¶ with Na[Ru(η -C₅H₅)(CO)₂] in thf gave the brown complex **4** (5–10%) along with the μ_3 -methylidyne complex, (μ_3 -H–C)Co₃(CO)₆(tdpm) **5**, after chromatographic separation (Scheme 2).† A ¹H NMR spectrum of **4** containing a η -C₅H₅ signal (δ 5.81) in addition to signals from tdpm [δ 5.77 (1 H, q, J_{PH} 6.1 Hz, P₃CH), 6.7–7.3 (30 H, m, Ph₆)] is consistent with

Fig. 1 Molecular structure of 2 drawn at the 30% probability level. Important bond lengths (Å) and angles (°): C(1)–Ru(1) 1.97(2), C(1)–Co(1) 1.86(2), C(1)–Co(2) 1.95(2), C(1)–Co(3) 1.93(2), C(1)–Co(4) 1.87(2), Ru(1)–C(1)–Co(1) 99.6(7), Ru(1)–C(1)–Co(2) 139.1(9), Ru(1)–C(1)–Co(3) 142.2(9), Ru(1)–C(1)–Co(4) 95.4(7), Co(1)–C(1)–Co(2) 82.7(6), Co(1)–C(1)–Co(3) 86.6(6), Co(1)–C(1)–Co(4) 165.0(10), Co(2)–C(1)–Co(3) 78.6(6), Co(2)–C(1)–Co(4) 85.4(6), Co(3)–C(1)–Co(4) 82.1(6).

Chem. Commun., 1997 1557

 $(\eta - C_5 H_5)(CO)_2 Ru(\mu_4 - C)Co_3$ expected structure, the $(CO)_6(tdpm)$, which is supported by the single ³¹P NMR resonance (δ 39.0) and established by X-ray crystallography (Fig. 2).^{\ddagger} The central carbido carbon atom [C(1)] is bonded to the distal Ru atom and the basal Co_3 triangle through σ bonds [C(1)-Ru 2.122(8) Å, C(1)-Co 1.887-1.924(9) Å]. Although the Ru-C(1)-Co [129.2-132.9(5)°] and Co-C(1)-Co angles [80.4–81.6(3)°] deviate from the ideal tetrahedral angle (109.4°) owing to the fact that the Co atoms are linked together by metal-metal bonds, the hybridization of the central carbido carbon atom is found to be close to sp³. Thus the tetranuclear complex 4 has been characterized as a tetrahedral sp³ carbide cluster compound, a permetallated methane. The formation of the μ_3 -CH compound 5 suggests participation of a radical mechanism initiated by electron transfer from the ruthenate to **3**. Coupling of the resulting species, radical $\cdot(\mu_3-C)Co_3(CO)_6(tdpm)$ and $\cdot Ru(\eta-C_5H_5)(CO)_2$, would furnish

Fig. 2 Molecular structure of 4 drawn at the 30% probability level. Important bond lengths (Å) and angles (°): C(1)–Ru 2.122(8), C(1)–Co(1) 1.887(9), C(1)–Co(2) 1.924(8), C(1)–Co(3) 1.912(9), Ru–C(1)–Co(1) 129.2(4), Ru–C(1)–Co(2) 132.9(5), Ru–C(1)–Co(3) 132.2(5), Co(1)–C(1)–Co(2) 80.9(3), Co(2)–C(1)–Co(3) 80.4(3), Co(3)–C(1)–Co(1) 81.6(3).

4, but H-abstraction from the reaction medium may give rise to **5**.

In conclusion, the present study has revealed the versatility of the synthetic method for carbide cluster compounds *via* nucleophilic displacement of halogenomethylidyne clusters with metalates, and the first example of a structurally characterized tetrahedral sp^3 carbide cluster has been prepared successfully by this method.

This work was supported by grants from the Ministry of Education, Science, Sports and Culture of the Japanese Government.

Footnotes and References

* E-mail: makita@res.titech.ac.jp

[†] Spectral data: for **2**: δ_H(CDCI₃) 5.20, 5.22 (s, C₅H₅ × 2); IR (CH₂Cl₂); v(C=O) 2073, 2037, 2021, 1974, 1948, 1848 cm⁻¹; FDMS: *m/z* 1145 (M⁺). For **4**: IR (CH₂Cl₂), *v*(C=O) 2034, 1986, 1972, 1938 cm⁻¹; FDMS: *m/z* 1146 (M⁺). Attempted measurement of $\delta_{\rm C}(\mu$ -C) of **2** and **4** was unsuccessful owing to the ⁵⁹Co quadrapole moment and ³¹P coupling.

[‡] X-Ray diffraction measurements of **2** were made on a Rigaku RAXIS IV imaging plate area detector with graphite-monochromated Mo-Kα radiation. *Crystal data* for **2**: C₂₄H₁₀Co₄HgO₁₃Ru₂ M = 1144.8, T = 25 °C, monoclinic, space group C2/c, a = 39.95(1), b = 8.606(2), c = 18.22(2) Å, $\beta = 101.44(7)^\circ$, U = 6139(5) Å³, Z = 8, $D_c = 2.48$ g cm⁻³, $\mu = 81.2$ cm⁻¹, $R(R_w) = 0.110(0.161)$ for all the 5773 unique data and 392 parameters (on F^2). X-Ray diffraction measurements of **4** were made on a Rigaku AFC7R automated four-circle diffractometer with graphite-monochromated Mo-Kα radiation. *Crystal data* for **4**·2C₆H₅Me: C₆₅H₅₂Co₃-O₈P₃Ru, M = 1331.9, T = -70 °C, orthorhombic, space group $P2_{12}1_{2}1_{2}$, a = 19.565(3), b = 23.763(5), c = 12.544(3) Å, U = 5832(4) Å³, Z = 8, $D_c = 1.52$ g cm⁻³, $\mu = 12.3$ cm⁻¹ $R(R_w) = 0.085(0.087)$ for all the 5677 unique data and 635 parameters (on F^2). CCDC 182/524.

§ The $[HgRu(\eta-C_5H_5)(CO)_2]^+$ fragment may arise from $Hg[Ru(\eta-C_5H_5)(CO)_2]_2$, a byproduct of the synthesis of $Na[Ru(\eta-C_5H_5)(CO)_2]$ by Na-amalgam reduction. $Hg[Ru(\eta-C_5H_5)(CO)_2]_2$ was isolated from the reaction mixture and characterized by X-ray crystallography.

¶ Complex **3** was prepared by thermal reaction of $(\mu_3$ -Cl-C)Co₃(CO)₉ with tdpm. Attempted synthesis of the bromo derivative by reaction of **1** with tdpm did not afford the expected product but the zwitterionic cyclic adduct,

 $Co_3(CO)_6(\mu$ -PPh₂)(μ_3 -CPPh₂CH₂PPh₂), the formation of which also involved nucleophilic displacement at the μ_3 -Br–C moiety. M. Akita, Y. Takahashi and Y. Moro-oka, unpublished work.

- M. Tachikawa and E. L. Muetterties, *Prog. Inorg. Chem.*, 1981, 28, 203;
 J. S. Bradley, *Adv. Organomet. Chem.*, 1982, 22, 1.
- For related metal complexes with polycarbon ligands, see: (*a*) W. Beck, B. Niemer and M. Wieser, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 923; (*b*) H. Lang, *Angew. Chem., Int. Ed. Engl.*, 1994, **33**, 547; (*c*) M. Akita and Y. Moro-oka, *Bull. Chem. Soc. Jpn.*, 1995, **68**, 420; (*d*) M. Brady, W. Weng, Y. Zhou, J. W. Seyler, A. J. Amoroso, A. M. Arif, M. Böhme, G. Frenking and J. A. Gladysz, *J. Am. Chem. Soc.*, 1997, **119**, 775.
- 3 D. F. Shriver and M. P. Jensen, Acc. Chem. Res., 1988, 21, 374.
- 4 A tetragold carbide complex was reported by Schmidbauer *et al.*, but its molecular structure has not been determined. H. Schmidbauer and O. Steigelman, Z. Naturforsch., Teil B, 1992, 47, 1721. See also: H. Schmidbauer, Gold Bull., 1990, 23, 1.
- 5 Attempts to synthesize a tetrahedral carbide cluster and related tetranuclear complexes have appeared. (a) N. D. Duffy, N. M. Kassis and A. D. Rae, J. Organomet. Chem., 1993, 460, 97; (b) A. M. Crespi, M. J. Went, S. S. Sunshine and D. F. Shriver, Organometallics, 1988, 7, 214; (c) T. Beringhelli, G. Ciani, G. D'Alfonso, A. Sironi and M. Freni, J. Chem. Soc., Chem. Commun., 1985, 978.
- 6 M. Akita, S. Sugimoto, M. Tanaka and Y. Moro-oka, *J. Am. Chem. Soc.*, 1992, **114**, 7581. See also ref. 2(*b*).
- 7 D. Seyferth, Adv. Organomet. Chem., 1976, 14, 97.
- 8 See, for example: J. S. Bradley, E. W. Hill, G. B. Ansell and M. A. Madrick, *Organometallics*, 1982, 1, 1634.
- 9 V. G. Albano, P. Chini, S. Martinengo, M. Sansoni and D. Strumolo, J. Chem. Soc., Chem. Commun., 1974, 299; A. Ceriotti, G. Longoni, M. Manassero, P. R. Della and S. Mirella, J. Chem. Soc., Dalton Trans., 1984, 299.

Received in Cambridge, UK, 24th April 1997; 7/02806G