3,4-DIAZABENZVALENE, THE AZOALKANE PRECURSOR TO TETRAHEDRANE. SYNTHESIS AND REACTIVITY.

David A. Kaisaki and Dennis A. Dougherty1*

Contribution No. 7640 from the Arnold and Mabel Beckman Laboratory of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

Abstract: The title diazene 1 has been synthesized and shown to decompose thermally to cyclobutadiene over a surprisingly small barrier.

Cyclic 1,2-diazenes (azoalkanes) have been shown to be of great value in the synthesis of reactive and strained molecules.² A variety of such structures has been prepared, but the tricyclic compound, 3,4-diazatricylo[3.1.0.0^{2,6}]hex-3-ene (1, 3,4-diazabenzvalene), has yet to be described. This molecule is of considerable interest, both in relation to its own inherent strain (*ca.* 77 kcal/mol, the value estimated for benzvalene,³ **2**) and reactivity, and as a potential precursor to tetrahedrane⁴ (**3**). We describe herein the synthesis and spectroscopic characterization of **1** and a study of its thermal decomposition and photochemical behavior above -150°C.

The synthesis of 1 begins with the diol, 4 which has been synthesized previously in this laboratory.⁵ The diacid, 5, was formed in 55% yield by oxidation with potassium permanganate in water. This was followed by a modified Hunsdiecker reaction.⁶ Refluxing 5 in the presence of bromine and mercuric oxide with magnesium sulfate in methylene chloride while irradiating with a 67 watt incandescent light bulb afforded a mixture of three isomers of the dibromide, 6, in 44% yield. The dibromide mixture was reductively coupled using 2% lithium amalgam in THF, giving 7 as a white, crystalline product in 70% yield. Urazoles 6 and 7 were purified using flash column chromatography on silica with a petroleum ether/ethyl acetate eluent system, and were fully characterized by ¹H and ¹³C NMR, G.C./M.S., and, in the case of 7, exact mass measurements.⁷

The ¹H NMR spectrum (CDCl₃) of 7 contains the characteristic *N*-methyl peak at δ 2.97 and two coupled triplets (*J* = 1.71 Hz) at δ 2.84 and δ 4.60 which were assigned to the bicyclobutane ring protons. The chemical shifts and small H – H coupling constants are similar to those of the related urazole⁸ **8** and the analogous ketone,⁹ **9**. The strained character of the bicyclobutane ring in 7 is reflected in the large ¹³C-¹H coupling constants (*J* = 223.02, 195.14 Hz).

Hydrolysis of the urazole ring in 7 was accomplished with potassium hydroxide in isopropanol. The resulting semicarbazide, 10, exhibited the characteristic *N*-methyl doublet and inequivalence of the C_2 and C_5 ring protons in the ¹H NMR spectrum. Oxidation of the semicarbazide to the diazene was accomplished using nickel peroxide⁵ in methylene chloride/dimethyl ether at -78° C. Cold filtration of the heterogeneous mixture followed by distillation of the solvent at -78° C completed the synthesis of 1.

The ¹H NMR spectrum of **1** in methylene chloride¹⁰ exhibits two coupled triplets (J = 1.22 Hz) at δ 3.87 and δ 4.91. The signal at δ 4.91 corresponds to the C₂ and C₅ positions and may be compared to that found for the similar proton in **11** (δ 4.80).⁸ The C₁ and C₆ protons show a similar shift to those of benzvalene (**2**) (δ 3.53).³ The UV spectrum of **1** (diethyl ether) is highly structured with an intense 0,0 band (λ_{max} 310 nm) and two smaller peaks (304, 300). The spectral shape seen is similar to that for **11** and is consistent with the rigid structure of **1**.⁸ The λ_{max} is at shorter wavelength than that seen for **11** and most other cyclic diazenes. This observation can be attributed to a more favorable interaction between the π^* orbital of the diazene and the a₂ orbital of the bicyclobutane system, which results in a higher energy *n*- π^* transition for diazabenzvalene when compared to **11**.³,¹¹

Diazene 1 decays thermally to produce syn-tricyclooctadiene, 12, presumably via cyclobutadiene (eq 1).^{10,12} At -60° C, this process has a half-life of 22 minutes, implying a surprisingly small barrier. For comparison, the closely related diazene 11 decomposes with log A = 15.5, $E_a = 34.4$ kcal/mol, giving it a similar half-life at 133° C.¹³ Thus, conversion of 11 to 1 lowers E_a by ca. 16 kcal/mol (assuming similar log A values). The thermal decomposition of 11 has been shown to proceed via one-bond cleavage, producing an intermediate diazenyl biradical.¹³ Replacing the cyclobutane ring of 11 by a bicyclobutane to produce 1 does lead to a substantial increase in strain. However, this additional strain is also present in the deazetation transition state, if 1 and 11 decompose by the same mechanism. Using the best estimates for the strain energies of the compounds involved,¹⁴ we conclude that the increase in strain on going from bicyclobutane to 1 is comparable to, or perhaps even *less* than that for going from cyclobutane to 11. Thus, the release of strain upon C – N cleavage is not significantly greater in 1 vs 11.

An alternative explanation of the difference between 1 and 11 would be a change in mechanism. Diazene 1 can undergo a direct, concerted, $[{}_{\sigma}2_{s} + {}_{\sigma}2_{a} + {}_{\sigma}2_{a}]$ conversion to cyclobutadiene plus N₂. There is ample precedent for dramatic rate accelerations of diazene decompositions upon introduction of a strained σ bond that can divert the reaction from a biradical path to a concerted sixelectron process.^{2a,17} While the orientation of the strained bond in 1 is different than in previous cases, the cyclic array shown seems quite feasible.

It is interesting to compare the thermal decompositions of benzvalene (2) and 1 (Scheme). Both can rearrange to an aromatic product (benzene or pyridazine (13)), in a reaction that is highly exothermic, but still possesses a substantial barrier.³ Only for diazene 1, however, is the fragmentation to cyclobutadiene exothermic. This is, of course, a consequence of the much greater thermodynamic stability of N₂ vs acetylene.

The photochemical behavior of **1** has been studied using several solvents at varying temperatures.¹⁰ Photolysis of **1** at -196° C followed by ¹H NMR at -150° C (propane- d_8) or at -100° C (diethylether- d_{10}) resulted in cyclobutadiene dimer. Photolysis of **1** in a 1:3 mixture of CDCl₂F:CDClF₂¹⁸ at -196° C followed by ¹H NMR at -150° produced both **13** and **12**, (*ca.* 1:1).

In all our studies of the chemistry of 1 to date, no direct evidence of tetrahedrane has been found. There have been several recent theoretical studies,¹⁹ both ab initio and semi-empirical in nature, on the stability of tetrahedrane. These have concluded that tetrahedrane does lie in a potential energy well. If we assume that tetrahedrane is a product of the photolysis of 1, and if we assume a *log A* of 15 for the thermal decomposition of tetrahedrane, then an upper limit of 10 kcal/mol is imposed upon this process by the -150° NMR experiments.

It appears that if tetrahedrane is a viable product from the photolysis of 1, the characterization will depend on low temperature matrix isolation techniques. We are currently investigating the photolytic properties of 1 in inert gas matrices at 10 K, using FT-IR to characterize the resulting products.

Acknowledgement. We thank Professors G. Olah and M. Squillacote for helpful discussion. This work was supported by the National Science Foundation, to whom we are grateful.

References

(1) Camille and Henry Dreyfus Teacher-Scholar, 1984-1989.

(2) (a) Engel, P.S. Chem. Rev. 1980, 80, 99-150. (b) Adam, W.; De Lucchi, O. Angew. Chem., Int. Ed. Engl. 1980, 19, 762-779.

(3) For an excellent overview of the chemistry of benzvalene, see: Christl, M. Angew. Chem., Int. Ed. Engl. **1981**, *20*, 529-546.

(4) Zefirov, N.S.; Koz'min, A.S.; Abramenkov, A.V. *Russian Chemical Reviews* **1978**, *47*, 163-171. Greenberg, A.; Liebman, J.F. *Strained Organic Molecules;* Academic: New York, 1978.

(5) Snyder, G.J.; Dougherty, D.A. J. Am. Chem. Soc. 1985, 107, 1774-1775.

(6) Meyers, A.I.; Fleming, M.P. J. Org. Chem. **1979**, *44*, 3405-3406. Wiberg, K.B.; Dailey, W.P.; Walker, F.H.; Waddel, S.T.; Crocker, L.S.; Newton, M. J. Am. Chem. Soc. **1985**, *107*, 7247-7257.

(7) **6**: ¹H NMR (CDCl₃) **exo**, **exo**; δ 3.05 (s, 3 H), 4.23 (t, 2 H, J = 1.71 Hz), 4.92 (t, 2 H, J = 1.71 Hz), endo, exo; δ 3.05 (s, 3 H), 4.25 (s, 1 H), 4.87 (d, 2 H, J = 1.71 Hz), 5.31 (t, 1 H, J = 1.71 Hz), endo, endo; δ 3.10 (s, 3 H), 4.15 (s, 2 H), 4.79 (s, 2 H); ¹³C NMR (CDCl₃) **exo**, exo; δ 26.58, 39.87, 67.57, 158.11, exo, endo; 26.64, 47.49, 47.81, 68.76, 158.10, endo, endo; 26.64, 48.42, 67.75, 158.20; M.S., three M + peaks corresponding to the bromine isotope effect in a dibromide were found at *M*/e 323, 325, and 327 with ratios of 1.05:2.12:1.00 in a sample containing a mixture of the three isomers. **7**: Mp 116-116.5° C; ¹³C NMR (CDCl₃) δ 7.51, 25.97, 52.35, 161.86; Exact mass calcd: 165.0538, found: 165.0539.

(8) Chang, M.H.; Dougherty, D.A. J. Org. Chem. 1981, 46, 4092-4093.

(9) Maier, G.; Hoppe, M.; Reisenauer, H.P. Angew. Chem., Int. Ed. Engl. 1983, 22, 990-991.

(10) All 1H NMR solutions contained varying amounts of unreacted and rearranged semicarbazide which could not be separated from 1. However, the thermal behavior of 1 is unaffected by the impurities. Similarly, both the thermal and photochemical behavior of 1 are unchanged by the addition of 2,6-lutidine, indicating that acid catalysis is not involved.

(11) Jorgenson, W.L. J. Am. Chem. Soc. 1975, 97, 3082-3089.

- (12) Bally, T.; Masamune, S. Tetrahedron 1980, 36, 343-370.
- (13) Chang, M.H.; Jain, R.; Dougherty, D.A. J. Am. Chem. Soc. 1984, 106, 4211-4217.

(14) Strain energies were calculated as follows: 77 kcal/mol as an upper limit for 1, based on the observations of Kao¹⁵ that polycyclic diazenes have strain energies that are slightly less than the analogous alkene (2, in this case); 47.3 kcal/mol for 11 calculated using the molecular mechanics model of Kao¹⁵; and Wiberg's¹⁶ values for cyclobutane and bicyclobutane (26.5 and 63.9 kcal/mol, repectively).

- (15) Kao, J.; Huang, T. J. Am. Chem. Soc. 1979, 101, 5546-5557.
- (16) Wiberg, K. B. Angew Chem., Int. Ed. Engl. 1986, 25, 312-322.
- (17) Berson, J.A.; Olin, S.S.; Petrillo, E.W.; Bickart, P., Tetrahedron 1974, 30, 1639-1649.
- (18) Squillacote, M.E.; Neth, J.M. Mag. Res. Chem. 1987, 25, 53-56.

(19) Kollmar, H. J. Am. Chem. Soc. **1980**, *102*, 2617-2621. Kollmar, H.; Carrion, F.; Dewar, M.J.S.; Bingham, R.C. J. Am. Chem. Soc. **1981**, *103*, 5292-5303.

(Received in USA 4 August 1987)