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Abstract: The synthesis of aromatic ring-based pentamidine analogues, in which the aliphatic bridge has been 
replaced by benzene, pyridine, or pyrimidine has been accomplished in two steps. Compounds containing 
benzene and pyridine as the central core of the molecule have demonstrated activity against PCP in culture. 
Copyright © 1996 Elsevier Science Ltd 

The struggle against AIDS and related opportunistic infections is being waged on many fronts. While 

the majority of interest lies in developing inhibitors of HIV, the presumed cause of AIDS, a growing body of 

knowledge concerning opportunistic infections is developing. 

Pneumocystis carinii pneumonia (PCP) is one of the opportunistic infections afflicting many 

individuals with AIDS. It has been described as the leading cause of death in AIDS patients. Thus, there is an 

urgency to finding a suitable chemotherapeutic agent that can halt this infection. I 

At present, only three regimens are approved for treatment of PCP: (1) a combination of trimethoprim 

and sulfamethoxazole, (2) dapsone, and (3) pentamidine. Since each of these treatments have serious 

limitations, such as leukopenia, nausea and vomiting, much work is needed to avoid these deleterious side 

effects. A considerable effort is currently underway to understand and improve the behavior of pentamidine. 

In related studies, pentamidine has been used effectively, although with undesirable side effects, in the 

treatment of leishmaniasis. 2 
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Analogues of pentamidine were prepared and evaluated in an effort to find a more efficient 

chemotherapeutic agent for both of these infections. Only recently have these efforts begun to focus on the 

bridge portion of pentarnidine, namely the five carbon chain. Varying the chain length 3-5 has shown that the 

anti-PCP activity is retained, if not improved. More recently, one double bond has been introduced into the 

chain e7 and anti-PCP activity persists. Stilbamide has been employed against leishmaniasis and analogues 
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exploiting this bridge double bond have also been prepared, a'9 Furthermore, Boykin ~° has succeeded in 

replacing the entire bridge, including the oxygens, with a furan ring. These results demonstrate that 

considerable variability in the bridge may be tolerated in such analogues. We wish to report on our initial 

efforts along these lines. 

Our interest in heteroaromatic systems led us to postulate that a ring system in place of the five carbon 

chain would provide an interesting comparison with the non-cyclic systems reported to have good activity. 

Indeed, precedence in the field of leishmaniasis suggests that rigid ring systems may very well prove 

effective, luz The use of an aromatic precursor was envisioned to proceed quite readily, as shown in the 

Scheme. 
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i: Na, MeOH, 4-cyanobromobenzene, heat, I h 
ii: K2(303, 4-cyanophenol, DMF/toluene, heat, 12 h 
iii: NaOH, 4-cyanophenol, H20/acetone , ft., 3 h 
iv: HCI/EtOH/benzene, 0 °C, then rt, 3 h 
v: NH3/EtOH , 60 °C, 6 h 

R 

x/l% 

a: X = Y = CH; R= H 
b : X = C H ; Y = N ; R = H  
¢ :X=  N;Y=CH;  R=CI  

d : X = Y = C H ; R = H  
e : X = C H ; Y = N ; R = H  
f : X =  N;Y=CH;  R=NH 2 



Ring-based analogues of pentamidine 2369 

Treatment of 2,6-dichloropyridine 2b and 2,4,6-trichloropyrimidine 2c with the anion of 4- 

cyanophenol led to very good yields of the intermediate 4-cyanophenoxy derivatives (3b and 3e). Because of 

lower reactivity of halogens on benzene, resorcinol, 1, was used as the precursor for the benzene analogue. 

This phenol was converted into the diphenoxide with sodium methoxide and treated with 4- 

cyanobromobenzene to obtain the corresponding 4-cyanophenoxy derivative 3a. Subsequent treatment of 

these intermediates with ethanolic hydrogen chloride, followed by ethanolic ammonia, afforded very good 

yields of the corresponding amidine products (4d-f)) TM All compounds had correct elemental analyses and 

spectral data consistent with the assigned structures.15 

All three amidines (4d-f) were evaluated against PCP in culture. Compounds were evaluated in short 

term culture inocula from P. carinii-infected rat lung and cell cultures of human embryonic lung fibroblasts 

( n E E  cells) as described. 16-19 Both pentamidine (1.65 ~tM) and trimethoprim/sulfamethoxazole (170/987 

IIM) were included as positive controls in these experiments. Compounds 4d and 4e at 2.4 IxM were as 

effective as pentamidine at 1.65 ~tM. The third test compound (4t") was much less effective with differences 

from untreated control only appearing at days 5 and 7. We do not have a satisfactory explanation for the failure 

of the pyrimidine analogue to exhibit the same biological behavior as that of the benzene and pyridine 

analogues. Full dose response curves would be required to determine the rank order of potency of these 

compounds relative to pentamidine. 

These results demonstrate that rigid structures can also be employed in the development of suitable 

pentamidine analogues. Investigations in our laboratory continue to explore the role of other rings in lieu of the 

aliphatic chain of pentamidine. 
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