Einführung der Cyano-Gruppe in Pyrazine

Yasuo AKITA, Makoto SHIMAZAKI, Akihiro OHTA

Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

Obwohl einige Dicyanopyrazine als Herbizide wirksam sind und auch als Zwischenprodukte zur Herstellung von Arzneimitteln dienen, konnten diese Verbindungen bisher nur durch Ringschluß-Reaktionen hergestellt werden^{1,2}. Der Austausch von Halogen gegen die Cyano-Gruppe ist bisher nur für eine lod-Verbindung berichtet worden, und zwar liefert die Umsetzung von 2-lodo-3,6-dimethylpyrazin mit Kupfer(I)-cyanid 2-Cyano-3,6-dimethylpyrazin (2d) in guter Ausbeute³. Die Umwandlung von 2-Chloropyrazinen in die benötigten 2-lodopyrazine verläuft jedoch unbefriedigend.

Kürzlich berichteten wir über die Entchlorierung von Chloropyrazinen und ihren N-Oxiden mit Hilfe von Tetrakis[triphenylphosphin]-palladium⁴. In der vorliegenden Arbeit wird nun gezeigt, daß dieser Palladium-Katalysator auch zur Einführung der Cyano-Gruppe in Pyrazine verwendet werden kann.

$$\begin{array}{c}
R^{2} \downarrow^{N} \downarrow^{R^{1}} \\
R^{3} \downarrow^{N} \downarrow^{C}
\end{array}
+ KCN \xrightarrow{Pd[P(C_{6}H_{5})_{3}]_{4}/DMF}$$

$$\begin{array}{c}
R^{2} \downarrow^{N} \downarrow^{R^{1}} \\
R^{3} \downarrow^{N} \downarrow^{C} \downarrow^{N}
\end{array}
+ KCI$$

Kocht man eine Lösung von Chloropyrazin (1), Kaliumcyanid und Katalysator in Dimethylformamid 2.5 Stunden unter

0039-7881/81/1232-0974 \$ 03.00

© 1981 Georg Thieme Verlag · Stuttgart · New York

Tabelle. Cyanopyrazine (2) aus Chloropyrazinen (1)

Reaktion	R,	R ²	R³	Aus- beute [%]	F [°C]	Brutto- formel ^a bzw. F [°C] aus Lit.	I.R. (KBr) v _{CN} [cm ¹]	1 H-N.M.R. (CDCI $_{3}$ /TMS) δ [ppm]
1a ⁵ → 2a	Н	C ₆ H ₅	C ₆ H ₅	81	155-156°	C ₁₇ H ₁₁ N ₃ (257.3)	2250	9.01 (s, 1 H); 7.48 (m, 10 H)
1b ⁶ → 2b	C_6H_5	Н	C_6H_5	31	120-121°	$C_{17}H_{11}N_3$ (257.3)	2160	9.10 (s, 1 H); 7.90 (m, 4 H); 7.36 (m, 6 H)
1c ⁷ → 2c	C_6H_5	C_6H_5	Н	98	168~170°	$C_{17}H_{11}N_3$ (257.3)	2240	9.07 (s, 1 H); 8.07 (m, 4 H); 7.57 (m, 6 H)
1d ⁸ → 2d	CH ₃	Н	CH ₃	80	51-52°	49-50° 3	2260	8.79 (s, 1 H); 2.79 (s, 3 H); 2.64 (s, 3 H)
1e ⁹ → 2e	i-C ₃ H ₇	Н	<i>i</i> -C ₃ H ₇	4 7	81-83°	$C_{11}H_{15}N_3$ (189.3)	2250	8.76 (s, 1 H); 3.31 (m, 2 H); 1.29 (d, 12 H)
1f 10 → 2f	<i>i</i> -C ₄ H ₉	Н	i-C ₄ H ₉	77	40-41°	$C_{13}H_{19}N_3$ (217.3)	2250	8.80 (s, 1H); 2.97 (q, 2H); 2.80 (q, 2H); 1.38 (t, 3H);
$1g^{11} \rightarrow 2g$	Н	C_6H_5	CH_3	66	101103°	C ₁₂ H ₉ N ₃ (195.2)	2250	1.34 (t, 3 H) 8.98 (s, 1 H); 7.70 (m, 5 H); 2.71 (s, 3 H)
1h 11 → 2h	CH ₃	C_6H_5	Н	58	144-145°	$C_{12}H_9N_3$ (195.2)	2260	9.19 (s, 1 H); 8.29 (m, 2 H); 7.75 (m, 3 H); 2.89 (s, 3 H)
1i ¹² → 2i	<i>i</i> -C ₄ H ₉	CI→CN	<i>i</i> -C ₄ H ₉	76	104106°	$C_{14}H_{18}N_4$ (242.3)	2260	2.78 (d, 4H); 2.13 (m, 2H); 0.95 (d, 12H)
1j ¹¹ → 2j	C_6H_5	C ₆ H ₅	Cl→CN	68	169170°	$C_{18}H_{10}N_4$ (282.3)	2250	8.31 (m, 4H); 7.78 (m, 6H)
1k ¹³ → 2k	Cl→CN	C_6H_5	C_6H_5	16	260-261°	255° ²	2250	7.55 (m, 10 H)

^a Die Mikroanalysen stimmen mit den berechneten Werten zufriedenstellend überein: C, ±0.30; H, ±0.08; N, ±0.25.

Rückfluß, so erhält man das entsprechende Cyanopyrazin (2) in befriedigender Ausbeute. Merkwürdigerweise bildet sich jedoch das Cyanopyrazin 2b nur in schlechter Ausbeute, die auch durch Zugabe von 18-Kronenether-6 nicht verbessert werden kann.

Aus den 2,5- und 2,6-Dichloropyrazinen 1i und 1j erhält man unter denselben Bedingungen die entsprechenden Dicyanopyrazine 2i bzw. 2j in guten Ausbeuten. Dagegen ergibt die gleiche Umsetzung von 2,3-Dichloro-5,6-diphenylpyrazin (1k) in Dimethylformamid unter Rückfluß nur ein harziges Produkt und bei niedrigeren Temperaturen das Ausgangsmaterial. Erst bei Verwendung von Dimethylformamid/Acetonitril (1/1) gelingt die Isolierung von 2k, jedoch auch dann nur in einer Ausbeute von 16%.

Chloropyrazine können leicht hergestellt werden. Mit Tetrakis[triphenylphosphin]-palladium als Katalysator glauben wir, einen einfachen Weg zur Überführung der Chloro- in die entsprechenden Cyanopyrazine gefunden zu haben.

2-Cyano-3,6-diisobutylpyrazin (2f); Typische Arbeitsvorschrift:

Ein Gemisch von 2-Chloro-3,6-diisobutylpyrazin (1f; 2.260 g, 10 mmol), Kaliumcyanid (0.975 g, 15 mmol), Tetrakis[triphenylphosphin]-palladium (580 mg, 0.5 mmol) und Dimethylformamid (30 ml) wird 2.5 h unter Argon gekocht. Das Reaktionsgemisch wird dann in Wasser (100 ml) gegossen und mit Ether (3 × 30 ml) extrahiert. Der organische Extrakt wird mit Natriumsulfat getrocknet, der Ether abgedampft und der Rückstand (2.907 g) an Silicagel (Wakogel C-200; 90 g) chromatographiert. Eluieren mit Hexan/Ethyl-acetat (50/1) ergibt 2f, das aus Ethanol/Wasser umkristallisiert wird; Ausbeute: 1.68 g (77%); F.: 40-41°C.

Eingang: 24. Juni 1981

- ² T. Kojima, F. Nagasaki, J. Heterocyclic Chem. 17, 455 (1980).
- ³ A. Hirschberg, A. Peterkofsky, P. E. Spoerri, *J. Heterocyclic Chem.* **2,** 209 (1965).
- Y. Akita, A. Ohta, Heterocycles 16, 1325 (1981).
- G. Karmas, P. E. Spoerri, J. Am. Chem. Soc. 74, 1580 (1952).
- ⁶ A. Ohta, Y. Akita, Y. Nakane, Chem. Pharm. Bull. 27, 2980 (1979).
- ⁷ R. J. Lont, H. C. Van der Plas, *Recl. Trav. Chim. Pays-Bas* **92**, 449 (1973).
- R. A. Baxter, T. S. Spring, J. Chem. Soc. 1947, 1179.
- A. Ohta et al., J. Heterocyclic Chem. 18, 555 (1981).
- ⁰ A. Ohta, Chem. Pharm. Bull. 16, 1160 (1968).
- A. Ohta et al., Abstracts of the 7th Congress of Heterocyclic Chemistry, Chiba, Japan, 1974, p. 130.
- ¹² A. Ohta, Chem. Pharm. Bull. 12, 125 (1964).

¹ T. Tsuda, H. Ueda, Nippon Kagaku Kaishi 52, 213 (1978); C. A. 89, 163 542 (1978).