42 Communications Synthesis

α-Methylthio-α,β-unsaturated sulfones 3 are important synthetic intermediates. $^{1-3}$ Recently, it has been reported that α-methylthio-α,β-unsaturated sulfones can be smoothly reduced to α-methylthio substituted sulfones by sodium borohydride. Because sodium hydrogen telluride is a higher selective reducing agent than sodium borohydride, it has been used to reduce the C-C double bond of numerous α,β-unsaturated compounds. We found that sodium hydrogen telluride can selectively reduce the C-C double bond of α-sulfonyl-α,β-unsaturated ketones in ethanol/chloroform, whereas in dimethylformamide/ethanol, both reduction of C-C double bond and reductive desulfonylation are observed. In this paper we report on the reductivity of sodium hydrogen telluride toward α-methylthio-α,β-unsaturated sulfones 3.

Sulfones 3 were readily prepared by the Knoevenagel condensation of aromatic aldehydes 1 with methylthiomethyl phenyl sulfone (2). Reaction of sodium hydrogen telluride with sulfones 3 in ethanol at room temperature effects a reductive desulfonylation to the unsaturated sulfides 4 preferentially, with the conjugated C-C double bond remaining unaffected.

This reductive desulfonylation possesses certain extent of stereospecificity. Starting from (E)- α -methylthio- α , β -unsaturated sulfones 3, desulfonylation affords Z-isomers of vinyl sulfides in major amounts (Table). The importance of vinyl sulfides as synthetic intermediates. ^{8,9} is illustrated by the aldehydrolysis of 4 to aldehydes 5. ¹⁰⁻¹²

In summary, we have shown that sodium hydrogen telluride can be used for preferential reductive desulfonylation of α -methylthio- α , β -unsaturated sulfones 3 to unsaturated sulfides 5. The combination of reaction sequences starting from an aromatic aldehyde 1 via the vinyl sulfide 4 constitutes a new route to homologate aromatic aldehydes by one carbon atom.

Desulfonylation of α -Methylthio- α,β -unsaturated Sulfones. A New Route to One Carbon Homologation of Aromatic Aldehydes

Xian Huang,* Han-Zhong Zhang

Department of Chemistry, Hangzhou University, Hangzhou, People's Republic of China

 α -Methylthio- α , β -unsaturated sulfones 3 prepared from aromatic aldehydes 1 and sulfone 2 react with sodium hydrogen telluride in ethanol to undergo reductive desulfonylation to give vinyl sulfides 4 with certain extent of stereospecificity. A new route to one carbon homologation of aromatic aldehydes 1 to 5 is achieved by hydrolysis of 4 with titanium tetrachloride.

1, 3, 4	Ar	1, 3, 4	Ar	5	Ar
a	Ph	d	3-ClC ₆ H₄	a	Ph
b	4-CH ₃ C ₆ H ₄	b	$4-CH_3C_6H_4$	e	$4-ClC_6H_4$
c	4-CH ₃ OC ₆ H ₄	f	2-furyl	c	4-CH ₃ OC ₆ H ₄

(E)- α -Methylthio- α , β -unsaturated sulfones 3 were prepared by the method reported.

The vinyl sulfides $4\mathbf{a} - \mathbf{c}$ prepared (see below) were hydrolysed to the aldehydes $5\mathbf{a} - \mathbf{c}$ as described in the literature, ^{11,12} and identified by IR and ¹H-NMR data.

Table. Vinyl Sulfides 4 Prepared^a

Prod- uct	Yield (%)	Z/E-Ratio ^b	IR (neat) ^c v (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) d δ , J (Hz)
4a	82	74 : 26	1607, 1505, 847, 778, 740, 690, 530	Z: 2.37 (s, 3 H, CH ₃ S); 6.20, 6.43 (AB System, 2 H, $J = 10.8$); 7.20-7.60 (m, 5 H _{arom})
4b	73	74 : 26	1600, 1516, 820, 680, 523	E:: 6.35, 6.80 (AB System, 2H, $J = 15.8$) Z:: 2.34 (s, 3H); 2.36 (s, 3H, CH ₃ S); 6.13, 6.37 (AB system, 2H, $J = 10.8$); 7.04-7.48 (m, 4H _{arom}) E:: 6.30, 6.69 (AB system, 2H, $J = 15.5$)
4c	75	68:32	1610, 1515, 850, 830, 784, 730, 680, 530	Z: 2.36 (s, 3H, CH ₃ S); 3.8 (s, 3H, CH ₃); 6.07, 6.39 (AB system, 2H, $J = 10.8$); 6.78–7.52 (m, 4H _{arom}) E: 6.30, 6.62 (AB system, 2H, $J = 15.4$)
4d	78	76:24	1600, 1562, 1482, 830, 788, 770, 672, 560	Z: 2.36 (s. 3H, CH ₃ S); 6.09. 6.33 (AB system, 2H, $J = 13$); 7.16–7.52 (m, 4H _{aron}) E: 6.21, 6.83 (AB system, 2H, $J = 15.4$)
4e	80	68:32	1603, 1493, 1407, 1090, 1010, 847, 827	Z-: 2.37 (s, 3 H, CH ₃ S); 6.24, 6.39 (AB system, 2 H, $J = 11$); 7.20–7.50 (m, 4 H _{arom}) E-: 6.26, 6.79 (AB system, 2 H, $J = 15.4$)
4f	67	72:28	1647, 1610, 1457, 1154, 1086, 1018, 742, 690	Z: 2.36 (s, 3 H, CH ₃ S); 6.13, 6.37 (AB system, 2H, $J = 10.8$); 7.20~7.65 (m, 3H _{arom}) E: 6.16, 6.77 (AB system, 2H, $J = 15.6$)

The Z/E-mixtures of vinyl sulfides are obtained as oils. All are known compounds and characterized spectroscopically.

b Determined by 90 MHz spectra.

Methyl (β-Chlorophenylethenyl) Sulfide (4d); Typical Procedure:

To a solution of NaHTe, prepared from Te (1.3 g, 10 mmol), NaBH₄ (0.9 g, 24 mmol) in EtOH (20 mL) under N₂ atmosphere, is added a solution of (E)- α -methylthio- β -(3-chlorophenyl)ethenyl phenyl sulfone (3d; 1.3 g, 4 mmol) in EtOH (30 mL), and the mixture is stirred at room temperature for 3 h. The reaction is quenched by the addition of water (30 mL), and the mixture is kept open to air to precipitate out the Te powder. After 1 h, the mixture is filtered and the filtrate is extracted with ether $(3 \times 30 \text{ mL})$. The combined ethereal solution is dried (MgSO₄), and concentrated to give the crude product 4d, which is purified by column chromatography on silica gel using benzene as eluent; yield: 0.57 g (78 %); colorless oil; Z/E-ratio = 76:24 (Table).

This work was supported by National Natural Science Foundation of China.

Received: 17 February 1988; revised: 10 August 1988

- (1) Ogura, K. Pure Appl. Chem. 1987, 59, 1033.
- (2) Ogura, K., Watanabe, J., Takahashi, K., Iida, H. J. Org. Chem. 1982, 47, 5404.
- (3) Ogura, K., Ohtsuki, K., Takahashi, K., Iida, H. Chem. Lett. 1986, 1597.
- (4) Yamashita, M., Kato, Y., Suemitsu, R. Chem. Lett. 1980, 847.
- (5) Ramesh, M., Shanmugam, P. Indian J. Chem. Sect. B 1983, 22, 617.
- (6) Huang, X., Zhang, H. Synth. Commun., in press.
- (7) Ogura, K., Yahata, N., Hashizume, K., Tsuyama, K., Takahashi, K., Iida, H. Chem. Lett. 1983, 767, and references cited therein.
- (8) Dieter, R.K. Tetrahedron 1986, 42, 3029.
- (9) Corey, E.J., Shulman, J.I. J. Org. Chem. 1970, 35, 777.
- (10) Carlo, B., Giulio, C., Serafino, G. Chim. Ind. (Milan) 1977, 59, 839; C.A. 1978, 88, 152172.
- (11) Mukaiyama, T., Fukuyama, S., Kumamoto, T. Tetrahedron Lett. 1968, 3787.
- (12) Mukaiyama, T., Kamio, K., Kobayashi, S., Takei, H. Bull. Chem. Soc. Jpn. 1972, 45, 3723.

Recorded on Perkin Elmer 683 spectrophotometer.

d Recorded on JEOL FX 90Q spectrometer. For *E*-isomers, the chemical shifts of only the olefinic protons are given.