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Recently we reported the preparation of heterobimetallic
sulfides that contained aluminum atoms [LAl(m-S)2MCp2]
(M=Ti, 1; M=Zr, 2 ; L=HC[C(Me)N(2,6-iPr2C6H3)]2; Cp=
C5H5).

[1] The X-ray crystal structural analysis of the titanium
compound 1 confirmed the presence of a highly strained
{Al(m-S)2Ti} four-membered ring (S-Al-S 102.5(1), Al-S-Ti
84.7(1) and 83.6(1), S-Ti-S 89.3(1)8). The ring strain and the
short Al···Ti separation (3.118 6) prompted us to examine the
reactivity of 1 and 2 with water in expectation of a
nucleophilic attack that would lead to the opening of the
ring and to the isolation of compounds containing the
{LAl(EH)(m-E)M(EH)Cp2} framework (E=O or S depend-
ing on the degree of hydrolysis). Such species could serve as
unique precursors for the preparation of trimetallic systems
comparable with the alumoxane [(m-O)[LAl(m-O)]2AlMe],
which is prepared from [(m-O)[LAl(OH)]2] and AlMe2H.

[2]

Although a few dinuclear systems that contain the {M’(EH)-
(m-E)M(EH)} arrangement have been described (M’=Al,[2]

Fe,[3a] Ge,[3b,c] In,[3d] Re,[3e] Ru,[3f] Sn,[3g] V,[3h] Zr[3i]) none has
been structurally characterized that contains two different
metal atoms stabilized by organic ligands.

The addition of two equivalents of water to a solution of 1
or 2 in THF at room temperature led, after overnight stirring,
to the precipitation of a crystalline material. H2S was
identified as a by-product. The solid product was filtered
off, dried in vacuo, and isolated as pale brown (Ti) or pale
yellow (Zr) microcrystals. The 1H NMR spectroscopic, EI
mass spectrometric, and X-ray crystal structural analysis of
these products confirmed that the ring-opening reaction had
occurred, but revealed the presence of two derivatives in the
samples. The major component (about 85%) was identified as
[LAl(OH)(m-O)MCp2(SH)] (M=Ti, 3 ; M=Zr, 4) whereas
the minor component (about 15%) was the intermediate of
the hydrolysis, [LAl(SH)(m-O)MCp2(SH)]. One of the first
steps of the hydrolytic ring opening is the formation of an
unobserved intermediate [LAl(OH)(m-S)MCp2(SH)], which
subsequently rearranges into [LAl(SH)(m-O)MCp2(SH)].

The driving force for this intramolecular rearrangement is
the high oxophilicity of the metal centers and the higher
stability of the {Al-O-Ti} frame compared to {Al-S-Ti}.[4]

Compound [LAl(SH)(m-O)MCp2(SH)] reacts with a second
equivalent of water with elimination of H2S to form 3 or 4
(Scheme 1).

After elucidating the course of the hydrolysis, we focused
on the optimization of the hydrolysis conditions. The presence
of the intermediates in the final product can be explained by
the low solubility of the bridged species in THF and their
crystallization from the mother liquor before the reaction was
complete. Thus, the use of THF/CH2Cl2 (1:1) in the reaction
mixture led to the formation of pure 3 or 4. It is surprising that
in these reactions, the Al�S bond is more reactive than the
M�S bond. [LAl(SH)2] reacts smoothly with two equivalents
of water to give [LAl(OH)2] with elimination of H2S,

[5] but the
reaction is relatively slow and needs at least 20 minutes to
reach completion at room temperature. It was reported that
even traces of moisture in systems that contain Ti�S or Zr�S
bonds lead to fast hydrolysis of these bonds.[6] As reported
earlier, the alumoxane [{LAl(OH)}2O]

[2] is stable, whereas
[LAl(OH)2] decomposes even under an inert atmosphere.

[7] It
seems that the presence of at least one bridging oxygen atom
is necessary for the stabilization of the species containing the
{AlO2} unit.

The isomorphous compounds 3 and 4 crystallize in the
monoclinic space group P21/n, with one molecule in the
asymmetric unit (Figure 1).[8] We were not able to crystallize
pure 4, thus data for 4 contaminated with about 15% of the
intermediate [LAl(SH)(m-O)Zr(SH)Cp2] were used. The OH
moiety on the Al atom and the SH groups on the Ti (3) and Zr
(4) atoms adopt a cis conformation and are involved in an
intramolecular hydrogen bond O�H···S (3 2.66 6; 4 2.80 6).
The Al�O(H) (3 1.726 6; 4 1.720 6) and Al�O(M) (3
1.717 6; 4 1.713 6) bond lengths are similar to those in
[LAl(OH)2] (1.711 and 1.695 6),[9] [{LAl(OH)}2O] (1.694–
1.741 6),[2] and in the trimeric alumoxane [(m-O)[LAl(m-
O)]2(MeAl)] (1.726–1.708 6),

[2] but considerably shorter than
those in the m-OH derivatives (1.787–1.928 6).[10] The O-Al-
O angles (3 114.08 ; 4 114.78) are similar to those of

Scheme 1. Preparation of compounds 3 and 4.
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[LAl(OH)2], [{LAl(OH)}2O], and [(m-O)[LAl(m-O)]2-
(MeAl)] (108.3–115.38);[2, 9] the Al-O-M angles are 148.98
for 3 and 147.28 for 4. The Ti�O (1.820 6) and Ti�S (2.482 6)
bond lengths and the O-Ti-S angle (97.38) are similar to those
reported for other [Cp2TiOS] fragments: Ti�O 1.845–1.872 6;
Ti�S 2.314–2.467 6; O-Ti-S 87.7–97.98.[11] Furthermore, in the
zirconium derivative the Zr�O (1.939 6) and Zr�S (2.573 6)
bond lengths and the O-Zr-S angle (98.7 6) are similar to
those reported previously for species that contain the
{Cp2ZrOS} moiety: Zr�S 2.459–2.554 6; Zr�O 1.941–
2.199 6; O-Zr-S 92.6–103.38.[6b,12]

In summary, the heterobimetallic sulfides [LAl(m-S)2-
MCp2] are ideal precursors for the preparation of the
heterobimetallic oxide–hydroxide–hydrogensulfides 3 and 4
by hydrolysis. The presence of two free reactive function-
alities in a cis arrangement makes them potential starting
materials for the heterotrimetallic oxide–sulfides. Such reac-
tions are the subject of our ongoing research.

Experimental Section
All manipulations were performed under a dry and oxygen-free
atmosphere (N2 or Ar) by using Schlenk-line and glovebox techni-
ques.

3 : H2O (26 mL, 1.46 mmol) was added quickly to a solution of 1
(0.50 g, 0.73 mmol) in THF/CH2Cl2 (45 mL, 1:1) at room temperature.
The suspension was stirred for 10 h and filtered. All the volatile
species were removed under vacuum to leave a brown solid residue,
which was treated twice with cold toluene (5 mL). After filtration and
drying in vacuo, 3 was obtained as a light brown powder. Yield 0.31 g
(60%); m.p.: 227 8C (decomp); 1H NMR (500.13 MHz, CDCl3, 25 8C,
TMS): d= 1.07 (s, 1H, OH), 1.10 (d, 3JH-H= 6.9 Hz, 6H, CH(CH3)2),

1.20 (d, 3JH-H= 6.7 Hz, 6H, CH(CH3)2), 1.37 (d,
3JH-H= 6.9 Hz, 6H,

CH(CH3)2), 1.44 (d,
3JH-H= 6.7 Hz, 6H, CH(CH3)2), 1.77 (s, 6H, CH3),

2.08 (s, 1H, SH), 3.03 (sept, 3JH-H= 6.9 Hz, 2H, CH(CH3)2), 3.49 (sept,
3JH-H= 6.7 Hz, 2H, CH(CH3)2), 5.20 (s, 1H, g-CH), 5.36 (s, 10H, Cp�
H), 7.04–7.20 ppm (m, 6H, m-, p-Ar�H); 13C NMR (125.77 MHz,
CDCl3, 25 8C, TMS): d= 23.6, 24.2, 24.4, 24.7 (CH(CH3)2), 26.1, 27.5
(CH(CH3)2), 28.7 (CH3), 97.5 (g-CH), 113.9 (C of Cp) 124.0, 125.2,
127.3, 140.9, 142.9, 145.6 (i-, o-, m-, p-C of Ar), 170.6 ppm (C=N); IR
(KBr pellet): ñ= 3551 br (OH), 2574 vw (SH) cm�1; EI MS (70 eV):
m/z (%): 623 (10, [M�Cp]+), 605 (50, [M�Cp�H2O]

+); elemental
analysis calcd for C39H53AlN2O2STi (688.78 gmol

�1): C 68.0, H 7.8, N
4.1; found: C 67.5, H 8.0, N 4.2%.

4 : The synthesis of 4 was similar to that of 3. Compound 4 was
obtained from the reaction of H2O (25 mL, 1.37 mmol) with 2 (0.50 g,
0.69 mmol) as a pale yellow powder. Yield 0.31 g (62%); m.p.: 235 8C
(decomp); 1H NMR (500.13 MHz, CDCl3, 25 8C, TMS): d= 0.36 (s,
1H, OH), 1.11 (d, 3JH-H= 6.8 Hz, 6H, CH(CH3)2), 1.21 (d,

3JH-H=
6.8 Hz, 6H, CH(CH3)2), 1.38 (d,

3JH-H= 6.8 Hz, 6H, CH(CH3)2), 1.39
(d, 3JH-H= 6.8 Hz, 6H, CH(CH3)2), 1.65 (s, 1H, SH), 1.77 (s, 6H, CH3),
3.04 (sept, 3JH-H= 6.8 Hz, 2H, CH(CH3)2), 3.50 (sept,

3JH-H= 6.8 Hz,
2H, CH(CH3)2), 5.20 (s, 1H, g-CH), 5.46 (s, 10H, Cp-H), 7.04–
7.20 ppm (m, 6H,m-, p- Ar-H); 13C NMR (125.77 MHz, CDCl3, 25 8C,
TMS): d= 23.5, 24.4, 24.5, 24.6 (CH(CH3)2), 27.5, 28.6 (CH(CH3)2),
28.7 (CH3), 97.4 (g-CH), 111.8 (C of Cp) 124.0, 125.1, 127.3, 140.6,
143.2, 145.5 (i-, o-,m-, p-C of Ar), 170.6 ppm (C=N); IR (KBr pellet):
ñ= 3560 br (OH), 2562 vw (SH) cm�1; EI-MS (70 eV): m/z (%): 665
(5, [M�Cp]+), 647 (50, [M�Cp�H2O]

+); elemental analysis calcd for
C39H53AlN2O2SZr (732.12 g·mol

�1): C 64.0, H 7.3, N 3.8; found: C
63.5, H 7.4, N 3.9%.
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