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Abstract: An easy preparation of optically active 1,2-diol monoto-
sylate derivatives by enzymatic hydrolysis is disclosed. Lipase PS
(Burkholderia cepacia) catalyzes the hydrolysis of racemic 2-ace-
toxyhexyl tosylate with excellent enantioselectivity to afford the
corresponding optically active compounds. In this reaction, a
unique temperature effect is observed. After optimizing the reaction
conditions, this procedure is widely applicable to the practical prep-
aration of both enantiomers of various optically active compounds
with high ee.
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During the synthesis of natural and biologically active
compounds, optically active 1,2-diol monotosylates play
significant roles as useful precursors for chiral nonracem-
ic epoxides,1 amino alcohols,2 alkyl carbinols,3 etc. Many
synthetic procedures for optically active 1,2-diols have
been developed, and the following monotosylation of the
1,2-diols could give the corresponding 1,2-diol monoto-
sylates. Recently, the enzymatic reaction has been one of
the practical and attractive methods used for the prepara-
tion of optically active compounds, and the enzyme-medi-
ated kinetic resolutions of the racemic 1,2-diol
monotosylate derivatives have also been reported.4–6 In
these papers, several enzymes catalyzed the enantioselec-
tive reactions to afford optically active compounds. How-
ever, little attention has been paid to the methodical study
of the substrate specificity, and the reactions were not use-
ful tools for the preparation of various chiral synthons.
Furthermore, the methods reported did not always satis-
factorily work in terms of the enantioselectivity. In this re-
port, we disclose the enzyme-mediated kinetic resolution
of 2-acetoxyalkyl tosylates, and this procedure is widely
applicable for the easy and practical preparation of both
enantiomers of various optically active compounds after
optimizing the reaction conditions.

We selected the racemic 2-acetoxyhexyl tosylate [(±)-1]
as the representative substrate, which has a substituent
with a moderate carbon number.7 First, we individually
screened the enzyme system to hydrolyze (±)-1 with suf-
ficient recognition of the stereochemistry. In the screening
test, we focused on checking the ee of the substrate and
product. Spontaneous hydrolysis of the substrate was not

observed under the reaction conditions. Among the 12
commercially available hydrolytic enzymes,8 lipase PS
(Burkholderia cepacia) and lipase AK (Pseudomonas
fluorescens) from Amano Enzyme, Inc., gave the best re-
sults (Table 1, entries 1 and 4). The reactions for 24 hours
at 30 °C proceeded with moderate enantioselectivity to af-
ford the optically active (S)-1 and (R)-2,9,10 and the reac-
tivities and the enantioselectivities were almost same in
the both cases (PS, conv. = 0.54, E value = 48; AK,
conv. = 0.47, E value = 52).11 Second, we tried to exam-
ine the reaction using a co-solvent (toluene, DMSO, or i-
Pr2O) in order to improve the enantioselectivity. Although
both enzymes did not catalyze the hydrolysis of (±)-1 in
the medium containing 10% toluene, the addition of
DMSO and i-Pr2O significantly improved the enantiose-
lectivities (entries 2, 3, 5, and 6). In particular, the reaction
with lipase PS in buffer–i-Pr2O (9:1) proceeded smoothly
(conv. = 0.45) with the highest enantioselectivity (E
value = 244) to afford the optically active (S)-1 with 80%
ee {[a]D

25 –13.3 (c 0.96, CHCl3) and (R)-2 with 98% ee
{[a]D

29 –7.9 (c 0.71, CHCl3} in 58% and 39% yields, re-
spectively.12,13 The addition of i-Pr2O did not make a bi-
phasic system because i-Pr2O was slightly soluble in the

Table 1 Enantioselective Hydrolysis of 2-Acetoxyhexyl Tosylate 
[(±)-1]a

Entry Lipase Co-solvent ee of (S)-1 
(%)

ee of (R)-2 
(%)

Conv.b E valuec

1 PS – 97 84 0.54 48

2 DMSO 90 91 0.50 65

3 i-Pr2O 80 98 0.45 244

4 AK – 80 91 0.47 52

5 DMSO 98 93 0.51 127

6 i-Pr2O 27 96 0.22 64

a Unless otherwise noted, the reaction was performed using (±)-1 (ca. 
25 mg, 4 mM) with the enzyme (10 mg) in 0.1 M sodium phosphate 
buffer (pH 6.5) containing 10% co-solvent.
b Calculated using ee (1)/[ee (1) +ee (2)].
c Calculated using ln{[1 – conv.][1 – ee (1)]}/ln{[1 – conv.][1 + ee 
(1)]}.
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buffer and the shaking of the mixed solvent during the re-
action would form a fine-particle emulsion. On the other
hand, we also examined the enzymatic esterification of
(±)-2 with lipase PS-C Amano II, vinyl acetate and Et3N
in MTBE for 48 hours at 30 °C according to the procedure
reported by Boaz et al.5d Although the esterification pro-
ceeded, the reactivity (conv. = 0.12) and the enantioselec-
tivity (E value = 75) were lower than those obtained by
our hydrolysis version.

For the enzymatic kinetic resolution as well as the nonen-
zymatic reactions, the dependence of the enantioselectiv-
ity on the reaction temperature has been evaluated. In
many cases, lowering the temperature could increase the
enantioselectivity, although the conversion could de-
crease. We then tried to examine the temperature effect
(10–40 °C) on the reaction of (±)-1 with lipase PS using i-
Pr2O as the co-solvent (Figure 1). As expected, the con-

version decreased by lowering the reaction temperature.
On the other hand, the E value was out of proportion to the
temperature based on our expectation. While the E value
decreased above 30 °C as the standard temperature, low-
ering the temperature to 10 °C also decreased the E value.
Overall, an effect on the enantioselectivity by temperature
was observed at 30 °C. To the best of our knowledge,
there have been only a few reports on the presence of this
temperature inversion on the enantioselectivity for enzy-
matic reactions,14,15 and this is a rare case which reveals
the phenomenon apparently.

To achieve efficient preparative-scale experiments, the
substrate concentration was increased to 64 mM (16 times
higher than the former value). In this case, the reaction of
(±)-1 (ca. 800 mg) was carried out with lipase PS (ca. 30
mg) in a mixed solvent (buffer, 36 mL; i-Pr2O, 4 mL) for
72 hours at 30 °C. Fortunately, the enzyme catalyzed the
hydrolysis without any inhibition to afford both enantio-
mers with high ee; (S)-1 with 96% ee (38%) and (R)-2
with 99% ee (38%) (conv. = 0.49), and the E value was up
to 790. Furthermore, we succeeded in the enantioselective
hydrolysis using ca. 1.6 g of (±)-1 (128 mM) under the
same conditions (E value = 311), although the conversion
decreased to 0.31.

We next applied the reaction to various acetates, and these
results are summarized in Table 2. In all cases except for
entry 7, the hydrolyses proceeded with excellent enan-
tioselectivities to afford the corresponding optically ac-
tive compounds.16,17 In particular, almost complete optical
resolution of (±)-3b bearing the chloromethyl group (en-
tries 2 and 3) was accomplished after only one hour. It is
noteworthy that the length of the substituent R group did
not affect both the reactivity and the enantioselectivity,
and the enzyme preferred R-enantiomers in all the sub-

Figure 1 Temperature effect on conversion and E value for the re-
action of (±)-1 with lipase PS. The reaction was carried out for 24 h.

Table 2 Enantioselective Hydrolysis of 2-Acetoxyalkyl Tosylates (±)-3a

Entry R (S)-3 (R)-4 Conv. E value

Yield (%) ee (%) Yield (%) ee (%)

1 a Me 31 99.7 23 95 0.51 251

2 b CH2Cl 41 >99.9 41 90 0.53 >141

3b b CH2Cl 48 >99.9 52 99.2 0.50 >1890

4 c C7H15 52 78 45 99.0 0.44 474

5 d CH2CH2OBn 37 99.9 35 97 0.51 497

6 e CH2OMe 33 99.7 19 98 0.50 642

7 f CH2OBn 29 99.6 58 59 0.63 22

8 g CH2OC14H29 45 99.0 54 92 0.52 126

a Unless otherwise noted, the reaction was performed using (±)-3 (4 mM) with the enzyme in 0.1 M sodium phosphate buffer (pH 6.5) containing 
10% i-Pr2O for 24 h at 30 °C.
b The reaction was carried out for 1 h.
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strates. Only the glycerol-type substrate (±)-3f bearing the
benzyloxymethyl group (entry 7) showed a moderate
enantioselectivity. In this case, even the slow reactive
enantiomer might be more suitable for the enzyme active
site than those of other substrates. Further investigations
for applying the method and improving the E value for the
hydrolysis of 3f are now in progress.

In summary, a simple and efficient approach to produce
optically active 1,2-diol monotosylate derivatives by the
enzyme-mediated hydrolysis has been developed. Fur-
thermore, we observed a unique temperature effect on the
enantioselectivity. This method is applicable for various
compounds, and is expected to be a potentially useful tool
for organic synthesis.
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