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Abstract

We found reversible photo/thermal isomerization dfie o-cyanostilbenic derivative
(2)-2-(4-aminophenyl)-3-(4-(dodecyloxy)phenyl)-acnyitile, (©-CN-APHP,  which is
accompanied by a large decrease in compatibilitgrwhmixed with a nematic liquid crystal.
Moreover, a novel optical switch using a CN-APHRoekb liquid crystal that emits partially
linearly polarized light is investigated. By corilirtg the trans-cis isomerization of CN-APHP, it
is possibly to modulate not only photoluminesceimtensity but also its polarization. This could

open possibilities to design improved optical desic



1. Introduction

Liquid crystal displays (LCDs) evolved rapidly ovdre past decades and are currently

dominating the flat panel display industry [1,2]edto their advantages such as light weight,

thinness and lower power consumption. Howeverlithed crystals (LCs) in the displays do not

emit light themselves [3] directly and they requame extra light source such as a backlight [4,5],

which leads to energy consumption. The emittect lighm the conventional backlight is usually

unpolarized [2] and correspondingly LCDs requirdageers, which can change the unpolarized

light into linearly or circularly polarized lights]. The dichroic sheet polarizers used in LCDs

convert a major fraction of incident light into uamted thermal energy, which limits the

brightness, and energy efficiency of devices whiik technology.

Therefore, The polarized light source has gresgniil to improve the LCD performance.

By intrinsically emitting polarized light, polariziy sheets would become unnecessary and also the

power consumption could be reduced. Polarized releot photo-luminescent light sources have

been intensively studied [7,11]. Dyrekleval demonstrated that an organic electro-luminescence

(EL) device emitted polarized light based on aigrconjugated polymers [12]. Saricifti al

reported that linearly polarized photoluminescefiiee) can be emitted from nematic liquid

crystals doped with photoluminescent dyes [13]. rClkal reported that a cholesteric liquid

crystal film doped with fluorescent materials camitecircularly polarized PL [14]. Actually, the

emitted light from a single fluorescent molecule uisually polarized, but the light from a

macroscopic EL or PL is unpolarized due to disedemolecular distribution. Hence,

polarization can be controlled by manipulating thentation of the fluorescent molecules.

Recently, SH Jocet al were able to selectively produce linearly polkdzlight, circularly



polarized light, unpolarized light and partially lgozed light from a single photoluminescent

cholesteric liquid crystal cell by controlling thmolecular orientation electrically [15]. Such a

light source with tunable polarization could befukeé many optical devices such as displays or

polarization-dependent communication devices [1]6,17

Currently, a common problem encountered with dyefhigtures is the poor solubility of the

organic dye in the liquid crystal. In addition, tlie concentration of the dye is too high, the

luminescence is affected by aggregation-caused cohiem (ACQ). Fortunately,

aggregation-induced emission (AIE) was discovered both silole derivatives [18] and

a-cyanostilbenic derivatives [19]. AIE is the exagposite of ACQ: the luminophors are highly

emissive after aggregate formation because intreen@r motion (RIM) is restricted. In order to

improve solubility and overcome the typical quenchieffect at higher concentration these

AlE-active luminescent liquid crystals (LLCs) cae bised. LLCs can emit linear or circular

polarized light when aligned [3], and have beenelidused in information storage devices,

polarized organic lasers, anisotropic light-emgtidiodes, and one-dimensional semiconductors

[20,24].

Motivated by the AIE effect, various nexvcyanostilbenic derivatives have been synthesized

[25,26]. Like in ordinary stilbene and azobenzendetules, theZ-E isomerization process is

accompanied by a strong decrease in structural atioiliy with a liquid crystal. In this paper, a

new optical switch based on AlE-active luminesdenid crystals was developed. We find that

the fluorescence is partially linearly polarizedlahe degree of polarization can be continuously

controlled via conformational changes of the lumgent liquid crystal. The possibility of

photochemical patterning or image recording ushegé materials has also been demonstrated.



2. Experiment

General Methods

All chemicals were purchased from Sigma Aldrich asdd without further purification. The
synthetic route forZ)-CN-APHP is described in the supporting informatitH NMR spectra
were recorded on an Agilent VNMRS600 (600 MHz) $pmueter. UV-vis absorption spectra
were recorded with a Shimadzu UV2550 PC spectramsieag samples in solutions. PL spectra
were recorded with a HORIBA FluoroMax-4 spectroflumeter using samples in both solution
and a liquid crystal cell. The absolute photoluragece quantum yields of solid samples were
measured with a HORIBA FluoroMax-4 spectrofluoroenetith an integrating sphere (HORIBA
Scientific, F-3092 integrating sphere). Differeh8aanning calorimetry (DSC) was performed on
a METTLER 82le/400 DSC at a heating and cooling rat 5 °C min*. Polarizing optical
microscopy was carried out with an E600POL polagabptical microscope (Nikon, Tokyo, Japan)
equipped with a DS-5M CCD camera (Nikon) connetbeal DS-L1 control unit (Nikon).
Synthesis of (Z2)-2-(4-aminophenyl)-3-(4-hydroxyphenyl)acrylonitrile

This compound was synthesized according to theadallbscribed in the literature [27].
Synthesis of (Z2)-2-(4-aminophenyl)-3-(4-(dodecyloxy)phenyl)-acr ylonitrile ((Z)-CN-APHP)

(2)-2-(4-aminophenyl)-3-(4-hydroxyphenyl)acryloni&i(500 mg, 2.12 mmol) was dissolved
in DMF (10 mL) and NaOH (200 mg, 5 mmol) and stirrfor 15 min at RT. Afterwards
bromooctane (1.51 g, 7.82 mmol) was added, andntkieire was stirred at 90 °C for 12 h. The
mixture was poured into 500 mL water and extragtétl ethyl acetate (3 x100 mL) three times.
After performing silica gel column chromatograpmyhlexane : EtOAc = 6:1) the product was

recrystallized from ethanol and water to produgeliow powder (304.11 mg, 0.87 mmol) with a



yield of 60.8%.

'H-NMR ( CDCI3, 600 MHz, ppm ) = 7.80 (d, 2 H, ArH) = 8.4 Hz ), 7.47 (d, 2 H, ArH,
J=8.8Hz),7.28(s,1H,=CH), 6.93(d,2 HHAJ=8.8 Hz ), 6.65 (d, 2 H, ArH,= 8.4 Hz),
4.00(t,2H,CH J=6.4Hz), 3.85(t,2H, N;lJ=7.4Hz), 1.77 (m, 2H, CH, 1.64 ( m, 10H,
5CH2),0.88 (t,3H, CH3,J=6.0 Hz).

HRMS (MALDI-TOF) m/z [M + H] ]+: calcd for GsH»gN,O, 349.2274, found 349.2279.
Preparation of (E)-2-(4-aminophenyl)-3-(4-(dodecyloxy)phenyl)-acrylonitrile

((E)-CN-APHP)

(2)-CN-APHP powders (500 mg, 1.44 m mol) were added DMF (5 mL) and stirred at
room temperature for 10 min. Then the solution asliated with 440 nm light for 48 h and the
(2)-CN-APHP isomer mostly converted tB){CN-APHP. E)-CN-APHP was obtained by silica
gel column chromatography (n-hexane : EtOAc = 6The product had the appearance of a
yellow grease (265.5 mg, 0.76 mmol) with 53.1%diel

'H-NMR ( CDCI3, 600 MHz, ppm 5 = 7.26 (d, 2 H, ArH) = 8.4 Hz ), 7.16 (d, 2 H, ArH,
J=8.8Hz),7.13(s,1H,=CH), 6.72 (d, 2 HHAJ = 8.8 Hz ), 6.65 (d, 2 H, ArH,= 8.4 Hz ),
4.00(t,2H,CH J=6.4Hz),3.85(t, 2 H, Ns{J=7.4Hz), 1.77 (m, 2H, CH, 1.64 ( m, 10H,

5CH,), 0.88 (t,3H, CKlJ=6.0 Hz).
Device preparation

The nematic liquid crystal (E7) was purchased frttiengsu Hecheng Display Technology.
The material used in this work consists of E7 (8#%i CN-APHP (13%). The mixture was
stirred in the isotropic phase (9 for 1 hour to ensure complete dissolution. It wes injected
into an empty cell with anti-parallel rubbed polyi® alignment layers by capillary action. The

cell gap was controlled by a dispersion i spacer.

3. Resault and discussion



In order to clarify the thermodynamic, optical gpldoto-physical properties of thé& and
E-isomers, CN-APHP with purg- and pureE-isomers were prepared separately. Fig. 1(b) shows
the images of4)- and E)-CN-APHP under room and UV-light. Purg){ and E)-CN-APHP can
readily be distinguished as the PL intensity d#felearly. £)-CN-APHP emits bright bluish green
light with high PL quantum yields# = 0.67). While, E)-CN-APHP is barely fluorescent (PL
guantum yield is only 0.01) when excited with 36B 0V light.

The mesomorphic properties of CN-APHP were charizeté by both differential scanning
calorimetry (DSC) and polarized optical microscq®OM). The phase-transition temperatures
are revealed in the DSC traces. Fig. 1(d) showsthsl photograph ofZ)-CN-APHP at 78°C
during the heating process. Whe@)-CN-APHP was heated above 7€, anisotropic
mesomorphic textures became clearly visible. Mesphio textures could also be observed
during cooling of Z)-CN-APHP which suggests that the liquid crysta¢imantiotropic. The DSC
spectra of Z)-CN-APHP are shown in Fig. 1(c), the result agne#h the POM observation very
well. The liquid crystal phases appear in the tewmipee range from 73 to & during heating
(2)-CN-APHP at a rate of 8C per minute. However, no liquid crystal phase banobserved
during heating ofE)-CN-APHP, as shown in Fig. SE)(CN-APHP converts from the solid to
the liquid state directly at 78C during the heating cycle. According to the cadtioh results
based on the density functional theory, the optahiznolecular structure of thé&isomer is
coplanar and rod-like which can be seen in Figap3his is very beneficial if compact molecular
stacking is to be achieved. This is probably thesoa why theZ-isomer exhibits liquid crystal
phases. Since the two rings of tBésomers are significantly twisted, the optimizezbmetrical

structure is expected to be bent as shown in Fafb)S which prevents effective molecular



planarization and stacking in the aggregation stataddition, the observed decrease of PL when
transitioning from theZ-isomer toE-isomer is attributed to the bent structure of Easomer.
Such a structure generally leads to reduced rastriof intramolecular motions (RIM).

The quite different geometry of the-conjugated backbone significantly affects the
absorption and emission properties Of (@nd E)-CN-APHP. Fig. 2(a) shows that the absorption
peak fma) Of (2)-CN-APHP in DMF solution (2xI®mol-L™) is at 379 nm with a molar
extinction coefficientd) of 30950 crit-M™ In contrast, E)-CN-APHP hasimax at 364 nm withe
= 12550 cm'- M. Both the hypsochromic shift (15 nm) and the deseeof the molar extinction
coefficient atimax When transitioning from th&-isomer toE-isomer are attributed to the bent
structure of thée-isomer. This generally causes the effective caatjog length to decrease. Fig.
2(b) shows the PL spectra of a CN-APHP solutiontedcat 365 nm. The PL intensity of the
Z-isomer solution is much higher than the one ofBhgomer solution.

solution, the absorption and emission changes tf jpare Z)-CN-APHP and £)-CN-APHP
molecules in dilute DMF solution (2 x Tomol-L™) were monitored during excitation at 440 and
254 nm for thez — E and theE — Z photoisomerization process, respectively. The igitiem
peak of E)-CN-APHP shifts from 379 nm to 366 nm (photostadity state, PS% nn)
accompanied by a gradual decrease in absorbaneef@sction of exposure time at 440 nm
excitation as shown in Fig. S5(a). The time-depahé&& spectra of the CN-APHP solution were
measured at 365 nm excitation wavelength. As seen Fig. 3(b), the PL in solution decreased
considerably when 440 nm excitation was used. Intrast, Amax Of (E)-CN-APHP gradually
red-shifted and its absorbance increases untiP®8s, ., when excited with 254 nm light as

shown in Fig. S5(a). Fig. S5(b) shows the intensftthe photoluminescence emission increasing



with exposure time. These results demonstrate libéi Z to E and E to Z-isomerization in
solution are reversible between the Rgs.and PS&4 nmas seen from Fig. 3 (c) and (d). On the
basis of the conversion equation using the absoebamlues ofZ- and E-isomers, it was
calculated that the resultindE conversion ratio of4)- and g)-CN-APHP was approximately
25/75 (PS&o nn), and 50/50 (PS$; nn), respectively. Since the protons in vinylene and
phenyl-rings are placed in very different chemiealvironments, the photoisomerization process
of (2)-CN-APHP could also be clearly monitored by takiity NMR spectra as shown in Fig.
S4(a). With prolonged excitation time, the amouhth® E-isomer increased gradually with a
simultaneous decrease of tiésomer until a photostationary state was reachedording to the
proton peaks of vinylene in tieandE-isomers intH NMR spectra, Fig. S4(b) shows that HE
conversion ratio of CN-APHP is 25/75 at the phdadignary state. The results are consistent with
the conversion ratio obtained with the absorbardeey

For better understanding of the isomerization pgscef the CN-APHP molecules and
because th&-E isomerization may also be triggered thermally, als® investigated the thermal
behavior of the CN-APHP solution. As presentedim4; the cyanostilbene unit adoptZ-éorm
(black line) in initial state. Th&-to-E photoisomerization occurs when the solution isosegl to
440 nm light and reaches equilibrium after 20 mipasure time (blue line). Most of tiieisomer
molecules can be converted back toZHerm by heating at 166C (red line). The resultingd/E
conversion ratio at P$§& -cwas approximately 90/10, which is higher than Hid®S%s4 nm

The peculiarZ—E isomerization process of CN-APHP molecules is vatgresting for
potential use in optical memory devices. The isdwmagion of CN-APHP in positive liquid crystals

87 % E7 and a 13 %ZJ-CN-APHP mixture was investigated. As seen frorg. F$6, the



phase-transition temperatures of the host LC anpkdid&7 are revealed in the DSC trace at a
heating/cooling rate of & per minute and there is only one phase-transitibose temperature
changes from 58.2 °C to 63.3 °C. It means tEON-APHP is structurally compatible with E7.
When the mixture ofZ4)-CN-APHP and E7 is filled into the anti-parallelbbed cell,Z-isomer
molecules are oriented within the template of liqerystals due to the rod-like structure as
displayed in Fig. 5(a). During the photo-excitat@n440 nmZ-isomers gradually convert into
E-isomers and show phase separation as a resuie gfoor compatibility between tlieisomers
and the E7 liquid crystals. A large number of ldjarystal domains appear within the surrounding
E-isomer matrix, forming so-called fluorescent-maoikecdispersed liquid crystals (FMDLC) as
seen from Fig. 5(b). The photoluminescence interdiEFMDLC can be switched repeatedly with
an electric field [27]. After the cell was heateldoge 160°C for 50 h, most of thé&-isomer
molecules can be converted back to #érm. This increase the compatibility and liquid
crystalline domains disappear and convert backeouniform planar phase as displayed in Fig.
5(c).

Fig. 5 (d) shows the emission specig+£365 nm) of the cell in three states. At this aticih
wavelength, no photoluminescence from the host 4 Gbserved and the cell emits blue light at the
maximum located between 470 - 478 nm. The cdfigriritial state emits relatively strong blue liglile
the peak maximum of the cell is red-shifted to A48 compared to the cell in Pg§&m (470 nm) and
PSSeo o«c (477 nm). This is likely due to the bent structofethe E-isomer. Even though the PL of
(E)-CN-APHP is inferior to4)-CN-APHP, the PL at PS@ nshows enhanced blue emission compared to
PSSe0-c FMDLC is a highly inhomogeneous state with adargmber of randomly oriented LC domains,

which strongly scatters the incident light. Photofighe incident light entering the cell have talenmgo
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multiple refraction before leaving the cell. Thisoamizes the chances to interact with fluorescence
molecules and thereby increases fluorescence emisdoreover, as shown in Fig. 5e and Fig. S7Pthe
intensity can be switched repeatedly betweenp§snd PS&o -.cand modulated by controlling the
exposure time to 440 nm light. As presented inF{Ry. the CN-APHP doped LC is suitable for recogdbf
images. The PS& -cwas set as background and the letters “HFUT” aygzeBSHonroptical features.

In addition to the controllability of PL intensibyased on the isomerization of CN-APHP, the
degree of polarization of PL from CN-APHP can digoswitched and operated in memory mode.
Since E)-CN-APHP is a luminogen with liquid crystalline gmerties, we suspected that
anisotropic emission could be accomplished wittPilarized PL spectra were recorded and a
rotatable polarizer (8- 360°) was placed between the sample and the detedgorS& describes
the plots of the polarized intensity of photolunscence light parallel and perpendicular to the
rubbing direction of the liquid crystal cell versesposure time of 440 nm light. Fig. S9(a) shows
a polar diagram of the PL intensity of tH§-CN-APHP doped liquid crystal cell. The cell releea
a PL maximum for the directions of 0 © and 180which is the rubbing direction, and a minimum
value at the directions of 90 ° and 270 ° - whlpérpendicular to the rubbing direction.

Based on the above results, the dichroic ratiopadérized PL spectra of the CN-APHP
doped LC cell at PS& -c and PS$o nm Were studied. At PS§ - the orientation of the LC
mixture was parallel to the alignment layer. Thehdbic ratio is about 2.0. As shown in Fig.6(b),
the anisotropic emission almost disappeared afssand the dichroic ratio is only 1.2. In
addition, the dichroic ratio can change continupust increasing the exposure time to 440 nm
light as ploted in Fig. S10.

More interesting, the PL intensity parallel to thygiid crystal direction at PS& -cis similar
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to that at PS&onm The PL intensity normal to the liquid crystaledition at PSQo nmis larger

than that at PS& -cBased on these results, a novel pattern-recordetyod was demonstrated.

A UV lamp was used as light source to illuminate thixture and a polarizer was used to analyze

the change in PL efficiency. In Fig. 6(c), we céeady see the letters “HFUT” when the polarizer

is orientedvertically to the rubbing direction of the cell. When rotgtithe polarizeparallel to

the rubbing direction, the letters “HFUT” disappear

4, Conclusions

In summary, we have synthesized an AlE-active l@stent liquid crystal,Z)-CN-APHP,

which can be converted in®&isomers via 440 nm photoexcitation with a simuiaus decrease

in structural compatibility with a nematic liquidystal. A new optical switching effect based on

the CN-APHP doped liquid crystals has been dematestr It emits partially linearly polarized

light. By controlling the reversible photo/thern@E isomerization process, not only PL intensity

but also the PL polarization can be switched or uleted. Moreover, the possibility of

photochemical patterning or image recording witesth materials has been demonstrated. Our

results may help create a new modulating techniguéuture light-switchable photonic devices

and displays.
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Fig. 2 Absorption (a) and photoluminescence spébiraf (Z)- and (E)-CN-APHP in DMF
solution (2x10-5 mol- L-1).



(@ (b)s
0.6
5k
0.5
e s = all-Z-isomer
3 o4 —all-Z-isomer 3 4pF all-E-isomer
b} —all-E-isomer| =2 — PSS
by o s 440 nm
£ o3 PS50 3t
I — PSSy, um 8
2 02 £ 2L
= =
= &
o1 f 3 ik
290 1 L 1 ‘i"‘F 0 P il L i L
300 350 400 450 500 400 450 500 5§50 600 650 700
Wavelength (nm) Wavelength (nm)
© @
0.60 55
L ]
055 504
_ osof . } ~ 45
j ®all-Z-isomer ®440 nm 9254 nm :;; ®all-Z.isomer 440 nm ©254 nm
< oast Z.40
- =
& 0.40 L] ] [ ] L] [ ] E 35
‘3. .40 Ehe [ @
= =
< oss} \/\/V\ /\ = a0} /\/\/\A/\
030} e 4 25} . 9 w 9
L i 1 . i L A " L N L M " i
0 i 2 3 4 5 6 0 1 2 3 4 5 6
Cyele Cycle
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Fig. 4 (a) UV-vis absorption spectra of CN-APHFDIMF solution (2x10-5 mol- L-1) in different
states.
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Fig. S7 The changing tendency of photoluminescarteasity of CN-APHP doped liquid crystal
cell by increasing exposure time of 440 nm light.
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A new optical switch based on AlE-active luminescent liquid crystals
was devel oped.

The mixture material can emit partially linearly polarized light.

It is possibly to modulate photoluminescence intensity and its
polarization.

It has the potential to be used in improved optical devices.



