

0040-4039(94)02175-9

An Improved Asymmetric Nitroolefination of α -Alkyl- γ - and δ -lactones with Modified Nitroenamines

Manabu Node,* Ryuichi Kurosaki, Kouichi Hosomi, Takehisa Inoue, and Kiyoharu Nishide

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan Toshiumi Ohmori and Kaoru Fuji

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Abstract: New chiral nitroenamines 4a,b were found to be very effective for asymmetric nitroolefination of α -alkyl- γ - and δ -lactones. The enantiomeric excess of the product ran up to 99 %. A possible chelation model for the transition state of the asymmetric nitroolefination was discussed.

We have been involved in a program on the development of enantioselective carbon-carbon bond forming reactions to create an asymmetric quaternary carbon through an addition-elimination process using readily available chiral nitroenamines (e.g. 1a and 1b).¹ (S)- or (R)-2-Methoxymethylpyrrolidine (SMP or RMP) was an excellent auxiliary for the nitroolefination of δ -lactones and we applied this methodology to the expeditious asymmetric syntheses of indole alkaloids (*Aspidosperma* and *Hunteria* types)², Calabar beans alkaloids³ and diterpenoids⁴. The catalytic property of zinc enolates was observed in this asymmetric nitroolefination.⁵ In spite of high enantioselectivities with δ -lactones the enantioselectivities as well as the yields with γ -lactones remained low.^{1c} We have found that new chiral nitroenamines **4a**,**b** having a bulky substituent were excellent in asymmetric nitroolefination (Scheme) with γ -lactones as well as δ -lactones to give high enantioselectivity in excellent chemical yield.

Scheme

In order to elucidate the effect of the bulkiness of \mathbb{R}^2 in the chiral auxiliary we synthesized the new chiral nitroenamines 2-4,⁶ because the coordination of the oxygen of the chiral nitroenamine to zinc enolate was postulated under the reaction conditions.^{1c} The new chiral nitroenamines were crystalline, while the previous nitroenamines 1 were oily. Therefore optically pure 2-4 were obtained by recrystallization.

The results of asymmetric nitroolefination of α -alkyl- γ -butyrolactones were summarized in Table 1. The enantioselectivity with 2a, 3a, and 4a were much improved (entries 3-6), compared with 1a (entries 1 and 2).^{1c} Among them, the best result was obtained using nitroenamine 4a having (S)-2-*t*-butyldimethylsiloxymethyl-pyrrolidine as an auxiliary. The alkyl substituents of γ -lactone had little effect on enantiomeric excess (entries 5-7 and 8-10). Introduction of methyl substituent at R¹ in nitroenamine increased enantiomeric excess in 5 - 13 % (entries 8-10), compared with none alkyl substituent (entries 5-7). In the case of entry 9, the enantiomeric excess of the product ran up to 98 % in a quantitative yield.

	Nitroenamines			Zinc Enolates			Products 7			
Entry		R ¹	R ²		R	Solv.	Y	'ield (%)	ee (%)	[α] _D (CHCl ₃)
1	1a	н	Me	5a	Me	DME	7 a	82	56 ^a	- 21.3 °
2	1a	н	Me	5b	Et	DME	7 b	72	63 ^a	- 22.6 °
3	2a	н	н	5a	Me	THF	78	77	83 ^b	- 31.9 °
4	3a	н	Tr	5a	Me	THF	78	75	83 ^b	- 30.7 °
5	4a	н	TBS	5a	Me	DME	7 a	92	88 ^b	- 34.9 °
6	4a	н	TBS	5b	Et	DME	7 b	99	85 ^c	- 30.2 °
7	4a	н	TBS	5c	Allyi	DME	7 C	96	86 ^c	- 36.7 °
8	4b	Me	TBS	5a	Me	THF	7 đ	87	93 ^b	- 55.7 °
9	4b	Me	TBS	5b	Et	THF	7 e	99	98 ^b	- 32.8 °
10	4b	Me	TBS	5c	Allyl	THF	7 f	92	95 ^d	- 50.6 °

Table 1. Asymmetric Nitroolefination of α-Alkyl-γ-butyrolactones

Entries 1 and 2 were cited from ref. 1c. a) Chiral shift analysis [400MHz ¹H NMR, CDCl₃, Eu(hfc)₃] b) HPLC (DAICEL CHIRALPAK AS, *i*-PrOH) analysis c) HPLC (DAICEL CHIRALCEL OJ, *i*-PrOH) analysis d) HPLC (DAICEL CHIRALPAK AD, EtOH) analysis

Results of asymmetric nitroolefination of α -methyl- δ -valerolactone with new chiral nitroenamines are compiled in Table 2. Among the chiral nitroenamines, 4a and 4b yielded the highest enantiomeric excess. Although it was reported that three equivalents of lactone enolate were essential for giving high chemical yield at -78 °C, ^{1c} we have found that two equivalents were sufficient to obtain the comparable results when the reaction temperature was raised to -40 °C (entries 2 and 9). A possible model involving a complex through zinc is shown in Figure 1. The zinc enolate coordinated to the oxygen in the auxiliary can be released on the elevated reaction temperature at -40 °C so that the reaction completes with two equivalents of enolate.

The enantioselectivity depended on the bulkiness of OR^2 in the chiral auxiliary; namely the order was OH < OMe < OTr < OTBS. Among the four possible transition states involving the chelated six-membered chair form shown in Figure 2, transition states C and D were excluded because of the strong 1,3-diaxial interaction. The transition state A (formed from path A in Figure 1) should be more stable than the transition state B (from path B), because the zinc chelation involving 5,6-ring system is too strained to form a new carbon-carbon bond. The contribution of transition state B might be reduced with increasing steric interaction between the substituent R^2 and the ligand L. A consideration of above transition states is explicable of the high enantioselectivity in the nitroolefination with the nitroenamine 4 having a bulky substituent TBS.

	<u>Nite</u>	roenam	ines	6			Products ^a			
Entry		R ¹	R ²	eq.	Solv.		Yield (%) ^b	ee (%) ^c		
1	1b	Me	Me	4.0	THF	8b	90	95		
2 ^d	1b	Me	Me	2.0	THF	8b	87	93		
3	2 a	н	н	4.0	THF	8a	24	79		
4	2b	Me	н	4.0	THF	8b	35	90		
5	3a	н	Tr	4.0	THF	8a	66	89		
6	3b	Me	Tr	4.0	THF	8b	76	97		
7	4 a	н	TBS	4.0	DME	8a	82	93 ^e		
8	4b	Me	TBS	4.0	THE	8b	95	99		
9 ^d	4b	Me	TBS	2.0	THF	8b	99	95		

Table 2. Asymmetric Nitroolefination of α -Methyl- δ -valerolactone

a) The configuration of the products **8a,b** was *S* (see ref. 1c). b) Isolated yield c) Chiral shift analysis [270 MHz ¹H NMR, CDCl₃, Eu(hfc)₃]

d) The reaction temperature was warmed up from -78 °C to -40 °C. e) HPLC (DAICEL CHIRALPAK AS, +PrOH) analysis

Figure 2

This asymmetric nitroolefination using new nitroenamine 4 could be useful for the total synthesis of the natural products having an asymmetric quaternary carbon. Further studies are on the way to this goal.

ACKNOWLEDGMENT

We thank Dr. Akito Ichida and Mr. Atsushi Ohnishi, Daicel Chemical Inc., for their chiral HPLC analyses.

REFERENCES AND NOTES

- a) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. J. Am. Chem. Soc. 1986, 108, 3855-3856. b) Node, M.; Nagasawa, H.; Naniwa, Y.; Fuji, K. Synthesis 1987, 729-732. c) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Taga, T.; Machida, K.; Snatzke, G. J. Am. Chem. Soc. 1989, 111, 7921-7925. d) Node, M.; Fuji, K. J. Syn. Org. Chem. Jpn. 1990, 48, 389-402. e) Fuji, K.; Node, M. Synlett 1991, 603-610.
- a) Node, M.; Nagasawa, H.; Fuji, K. J. Am. Chem. Soc. 1987, 109, 7901-7903. b) Node, M.; Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517-521.
- a) Node, M.; Hao, X.-J.; Fuji, K. Chem. Lett. 1991, 57-60. b) Node, M.; Itoh, A.; Masaki, Y.; Fuji, K. Heterocycles 1991, 32, 1705-1707.
- a) Node, M.; Hao, X.-J.; Nagasawa, H.; Fuji, K. Tetrahedron Lett. 1989, 30, 4141-4144. b) Fuji, K.; Zheng, S.-Z.; Node, M.; Hao, X.-J. Chem. Pharm. Bull. 1991, 39, 202-203. c) Hao, X.-J.; Node, M.; Fuji, K. J. Chem. Soc. Perkin I 1992, 1505-1509.
- 5. Fuji, K.; Kawabata, T.; Naniwa, Y.; Ohmori, T.; Node, M. Chem. Pharm. Bull. 1994, 42, 999-1001.
- 6. The new chiral nitroenamines 2-4 were easily prepared in high yields as follows.

7. The CD spectrum of the products showed the same Cotton effects as those of the products from δ -lactones, which have S configuration. It can therefore be presumed that the absolute configuration of the products from γ -lactones was S.

(Received in Japan 26 July 1994; accepted 4 October 1994)