[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, NATIONAL SOUTHWEST ASSOCIATED UNIVERSITY AND THE INSTITUTE OF CHEMISTRY, NATIONAL ACADEMY OF PEIPING]

Syntheses of Compounds Related to Vitamin K. II. p-(3-Alkyl-4-hydroxynaphthylazo)-benzene-sulfonamides

By Edith Ju-Hwa Chu, Zoe-Ing Shen, Tsui-Lin Chien and T. S. Tuan

In continuation of our work on compounds related to vitamin K^1 a number of 2-alkyl-1-naphthols have been synthesized and coupled with the diazotized sulfanilamide to yield the corresponding p-(3-alkyl-4-hydroxynaphthylazo)-benzenesulfonamides in which the alkyl groups are ethyl, n-propyl, n-butyl, isobutyl, n-amyl and β -

TABLE I
2-ACYL-1-NAPHTHOLS

		% yield				
-1-naphthol	AlCl:	ZnCl ₂ (SnCl ₄)				
2-Acetyl-	67	89				
4-Acetyl-	6	0				
2-Propionyl-	40	100				
4-Propionyl-	4	0				
2-n-Butyryl-	37	100				
4-n-Butyryl-	3	. 0				
2-Isobutyryl-	53	75				
4-Isobutyryl-	34	0				
2-n-Valeryl-	73	83				
4-n-Valeryl-	2	0				
2-β-Phenylacetyl-		91				

Experimental

2-Alkyl-1-naphthols.—They were synthesized by Clemmensen reduction of 2-acyl-1-naphthols. Although the Stoughton method* of preparing 2-acyl-1-naphthols gave better result than other methods*-9 described in the literature, the Fries rearrangement of α -naphthyl ester by means of aluminum chloride always gave the p-isomer and other by-products besides the desired 2-acyl-1-naphthol. Then the procedure was thus modified: A mixture of equal amounts of the α -naphthyl ester and freshly fused and powdered zinc chloride was heated on an oil-bath at 140-50° for an hour. The cold mass was treated with water to remove zinc chloride and the precipitate was recrystallized from a mixture of alcohol and acetone. The yields of 2-acyl-1-naphthols were much more satisfactory as shown in Table I. The use of anhydrous stannic chloride gave the same good results.

The 4-isobutyryl- and 4-n-valeryl-1-naphthols were quantitatively rearranged to the 2-isomers, respectively, by refluxing with 35% sodium hydroxide solution for two hours. However, the 4-acetyl-1-naphthol was not isomerical hyperbolic through the same treatment.

merized by the same treatment. Among the 2-alkyl-1-naphthols prepared, the 2- β -phenylethyl-1-naphthol was not previously reported. It was obtained in colorless crystals from alcohol; yield, 23% and m. p. 77-78° (dec.). The reddish-orange needles of its picrate melt at 179-180 (dec.).

Anal. Calcd. for $C_{18}H_{16}O \cdot C_6H_8N_8O_7$: N, 8.81.¹⁰ Found: N, 9.20.

p-(3-Alkyl-4-hydroxynaphthylazo)-benzenesulfon-amides.—An acetic acid solution of 0.01 g. mole of 2-alkyl-1-naphthol was gradually added to a diazotized solution prepared from 0.01 g. mole of sulfanilamide. The colored precipitate was filtered and then purified either by recrystallization from a suitable solvent or by dissolving in dilute sodium hydroxide and reprecipitating with dilute hydrochloric acid. The yields and properties are listed in Table II.

Table II

p-(3-Alkyl-4-hydroxynaphthylazo)-benzenesulfonamides

	6.1	0-111	0	Yield, %	М. р., °С.	N Analy	ses,11 %
Alkyî group	Solvent for recrystn.	Color ¹¹	Cryst. form	%	°C.	Calcd.	Found
Ethyl	Acetone	Yellowish-orange	Fine needles	73	249	11.83	12.13
n-Propyl	Alc.	Yellowish-orange	Fine needles	69	251	11.38	11.39
n-Butyl	Alc.	Orange-yellow	Fine needles	66	280	10.96	10.70
Isobutyl	Alc.	Dark red	Viscous mass				
n-Amyl	Acetone	Yellowish-orange	Fine needles	56	260	10.57	10.04
β -Phenylethyl	NaOH + HCI	Red	Prisms	51	261	9.74	9.40

phenylethyl, respectively. The parent substance, p - (4 - hydroxynaphthylazo)-benzenesulfonamide was mentioned in the literature.²

All the p-(3-alkyl-4-hydroxynaphthylazo)-benzenesulfonamides were obtained in colored crystals except p-(3-isobutyl-4-hydroxynaphthylazo)-benzenesulfonamide which was a viscous mass and was difficultly purified. They possess no inhibitory effect on the growth of Bacillus coli, Staphylococcus aureus or Streptococcus pyrogenes. The antihemorrhagic activity of these compounds and p-(3-methyl-4-hydroxynaphthylazo)-benzenesulfonamide will be reported later on. They behave as indicators, red in alkaline solution and yellow in acid solution.

- (1) Chu and Shen, J. Chinese Chem. Soc., 10 (in press) (1943).
- (2) Tutiva and Kawamura, Arch. Dermatol. Syphilis, 182, 598 (1941).
- (3) The authors are indebted to Dr. Tang Fei-Fen and his collaborators in the Central Epidemics Prevention Bureau of China for the test.

- (4) Stoughton, This Journal, 57, 202 (1935).
- (5) Nencki and Sieber, J. prakt. Chem., 23, 147 (1881).
- (6) Akram, Desai and Kamal, Proc. Indian Acad Sci., 11A, 139 (1940).
- (7) Goldzweig and Kaiser, J. prakt. Chem., 43, 95 (1891).
- (8) Hantzsch, Ber., 39, 3096 (1906).
- (9) Brewster and Watters, This Journal, 64, 2578 (1942).
- (10) We wish to thank Dr. R. J. Williams for his generosity in permitting us to use the micro-Dumas Apparatus in the Biochemical Institute of University of Texas for some of the analyses.
 - (11) Compared with Mulliken's color standards.

Kunming, Yunnan, China Received January 22, 1944

The Second Ionization Constant of Deuterocarbonic Acid

By James Curry and Z. Zimmerman Hugus, Jr.

Introduction.—We have measured the e.m. f. of the following cells at 25°

H₂, KHCO₃, K₂CO₃, KCl, AgCl, Ag (I) D₂, KDCO₃, K₂CO₃, KCl, AgCl, Ag (II)