J. CHEM. SOC., CHEM. COMMUN., 1982

A Maximum in a Grunwald–Winstein Plot for a Limiting S_№1 Solvolysis

Dennis N. Kevill and Mohd S. Bahari

Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115, U.S.A.

The Grunwald–Winstein Y values for acetone-methanol mixtures vary appreciably and in a uniform manner but the specific rates of solvolysis of 2-adamantyl perchlorate vary by less than threefold over a range of from 5 to 100% methanol content and a shallow maximum is observed.

Recently, it was reported¹ that the $S_N 2$ solvolysis^{2,3} of methyl perchlorate in aqueous acetone or aqueous dioxan exhibits a maximum in the Grunwald–Winstein plot. Methyl derivatives

are good models for $S_N 2$ solvolyses and, indeed, a *Q*-parameter scale^{4,5} has been developed for situating the solvolysis mechanism for alkyl derivatives within a spectrum intermediate

N

Table 1. Specific rates of solvolysis of t-butyl chloride^a and Grunwald-Winstein Y values for acetone-methanol mixtures at 25.0 $^{\circ}$ C.

MeOH (v/v)	$10^{7}k_{1} (s^{-1})^{b}$	Y
100	7.53°	-1.099
80	$5.77~\pm~0.15$	-1.206
60	$2.84~\pm~0.06$	-1.513
40	$1.01~\pm~0.02$	-1.962
20	0.187 + 0.012	-2.695

^a[Bu^tCl] = ca. 0.01 M. ^b With estimated standard deviations and all runs performed in duplicate. ^c From A. H. Fainberg and S. Winstein, *J. Am. Chem. Soc.*, 1956, **78**, 2770.

Table 2. Specific rates of solvolysis of 2-adamantyl perchlorate^a in hydroxylic solvents at 0.0 $^{\circ}$ C.

Solvent ^b	10 ⁶ k ₁ (s ⁻¹) ^e	Y^{d}
CF ₃ CH ₂ OH ^e	$610.3~\pm~4.0$	+1.045
MeOH	$4.77~\pm~0.14$	1.090
AcOH	$(1.48)^{f}$	-1.675
EtOH	0.451 ± 0.011	-2.033
Pr ⁱ OH	0.123 ± 0.003	-2.73
Bu ^t OH	(0.071) ^g	-3.26

^a [2-AdOClO₃] = ca. 0.005 M. ^b On volume-volume basis, 98% of indicated solvent plus 2% pentane. ^e With estimated standard deviations and all runs performed in duplicate. ^d From P. R. Wells, *Chem. Rev.*, 1962, **62**, 171, except for value for CF₃CH₂OH which is from V. J. Shiner, Jr., W. Dowd, R. D. Fisher, S. R. Hartshorn, M. A. Kessick, L. Milakofsky, and M. W. Rapp, J. Am. Chem. Soc., 1969, **91**, 4838, ^e 2% dioxan replacing 2% pentane. ^t Extrapolated value obtained from Arrhenius plot of from Arrhenius plot of three determinations at 26–50 °C.

between methyl derivatives and 2-adamantyl (2-Ad) derivatives, considered as limiting $S_N 1$ substrates.⁶

Especially since 2-adamantyl methanesulphonate in aqueous acetone mixtures gives a shallow curve with gradually *increasing m* value,⁷ it is of interest to see whether perchlorate esters exhibit a maximum in Grunwald–Winstein plots for solvolyses at the $S_{\rm N}$ 1 mechanistic extreme. The 2-adamantyl perchlorate⁸ was prepared by heterogenous reaction of 2-adamantyl bromide with silver perchlorate in pentane. Unfortunately, 2adamantyl perchlorate (after transfer to dioxan) is of very limited solubility and very short half-life in solvents containing in excess of 50% water. However, it is soluble in all compositions of acetone–methanol mixtures, a system for which specific rates of solvolysis of methyl perchlorate have been reported.⁹

Methanol is considerably more polar than acetone as is indicated by higher E_T , Z, and $\log k_{100}$ values¹⁰ and Grunwald– Winstein Y values for acetone–methanol mixtures (Table 1) show the expected trend of decreasing value with increasing acetone content. As with the acetone–water system, a Grunwald–Winstein plot of the methyl perchlorate data⁹ has a maximum, showing that the presence of water is not essential for this phenomenon to be observed.

The specific solvolysis rates (acid formation) for 2-adamantyl perchlorate in five hydroxylic solvents (Table 2) show the normal behaviour for a limiting $S_{\rm N}1$ solvolysis with an *m* value of 0.989 \pm 0.020 (standard error), inclusion of the tbutyl alcohol solvolysis (requiring a rather lengthy Arrhenius plot extrapolation) leads to a value of 0.941 \pm 0.041. It is noteworthy that the acetolysis specific rate falls on the plot described by the alcoholyses; for 1-adamantyl toluene-*p*sulphonate, the acetolysis rate¹¹ was faster than predicted based

Methanol % (v/v)	10 ⁶ k ₁ (25.0 °C)	10 ⁶ k₁ (0.0 °C)
100	$227~\pm~4$	$4.77~\pm~0.14$
90		5.12 ± 0.12
80	299 ± 5	5.96 ± 0.19
60	345 ± 4	
40	317 ± 2	
20	236 ± 2	
10	171 ± 3	
5	$138~\pm~2$	

^a In units of s⁻¹ and with estimated standard deviations; all runs performed in duplicate. ^b [2-AdOClO₃] = ca. 0.005 M.^c On volume-volume basis, solvent is 98% of mixture indicated plus 2% pentane.

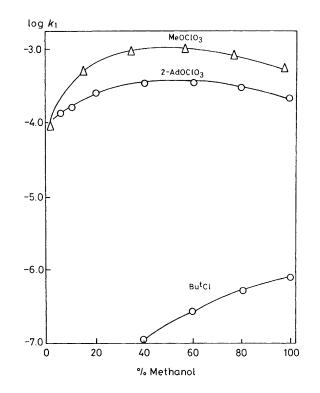


Figure 1. Solvolyses in acetone-methanol mixtures at 25.0 $^{\circ}$ C of methyl perchlorate (data from ref. 9), 2-adamantyl perchlorate, and t-butyl chloride.

upon the alcoholyses.¹² Presumably, the specific electrophilic assistance for the perchlorate leaving group is less than that for toluene-*p*-sulphonate and comparable to that for the chloride of the standard substrate.

Surprisingly, the specific rates of solvolysis of 2-adamantyl perchlorate in acetone-methanol mixtures (Table 3) show characteristics very similar to those for methyl perchlorate (Figure 1). In the range of 5 to 100% methanol, there is a less than three-fold variation in specific rate with a shallow maximum in plots against either solvent composition or Y values. The specific rates with 100 and 20% methanol content are essentially identical, despite a difference in Y value of 1.6.

We are currently investigating 2-adamantyl perchlorate in other mixed systems in an attempt to rationalize this highly unusual behaviour for a solvolysis involving a substrate of a type universally accepted as a good model for limiting $S_{\rm N}1$ character.

Received, 10th February 1982; Com. 141

References

- 1 D. N. Kevill and A. Wang, J. Chem. Soc., Chem. Commun., 1981, 83.
- 2 D. N. Kevill and H. R. Adolf, Tetrahedron Lett., 1976, 4811.
- 3 M. H. Abraham, A. Nasehzadeh, and J. J. Moura Ramos, Tetrahedron Lett., 1981, 22, 1929. 4 F. L. Schadt, T. W. Bentley, and P.v.R. Schleyer, J. Am.
- Chem. Soc., 1976, 98, 7667.
- 5 T. W. Bentley, C. T. Bowen, D. H. Morten, and P.v.R. Schleyer, J. Am. Chem. Soc., 1981, 103, 5466.

- 6 P.v.R. Schleyer, J. L. Fry, L. K. M. Lam, and C. J. Lancelot, J. Am. Chem. Soc., 1970, 92, 2542.
- 7 T. W. Bentley, C. T. Bowen, H. C. Brown, and F. J. Chloupek, J. Org. Chem., 1981, 46, 38.
- 8 D. N. Kevill and B. W. Shen, J. Am. Chem. Soc., 1981, 103, 4515.
- 9 J. Koskikallio, Suom. Kemistil. B, 1967, 40, 131.
- 10 For a discussion of these solvent polarity scales and the relevant values, see C. Reichardt, Angew. Chem., Int. Ed. Engl., 1965, 4, 29.
- 11 P.v.R. Schleyer and R. D. Nicholas, J. Am. Chem. Soc., 1961, 83, 2700; M. L. Sinnott, H. J. Storesund, and M. C. Whiting, Chem. Commun., 1969, 1000; B. R. Ree and J. C. Martin, J. Am. Chem. Soc.. 1970, 92, 1660.
- 12 D. N. Kevill, K. C. Kolwyck, and F. L. Weitl, J. Am. Chem. Soc., 1970, 92, 7300.