Dithiolane-Isocyanate Imminium Methylides: A Rapid Stereoselective Entry into γ-Lactams

(Colin W.G. Fishwick*, Richard J. Foster

Robin E. Carr

Abstract

The considerable phamacolngical and hiohgical inportance of heterocyctic systems, particularly those that are based upon saturated or partialis saturatio rings. continues to attract tremendous synthetic effort. In particular, much work has focusod on sterogomond in the synthesis of such species where the relative disposition of substituents is mportant.

In terms of the strewontedted synthesis, of heterocydic five-membered ring frameworks, the 1,3-dipolar cyctoaddition strategy lemains amongst the mos powerful. During the last two decades, the synthetic potential of this approach has heen considembly enhanced by the development of mild and versatile methods for the gencration and cyeloadtitoms of senthetically usctul dipoles. particularly in the case of azomethine ${ }^{-}$- and carhonyl ylides:. A particularts mild method tior the generation of 'non stabilised' azomethine ylides involves the
 The resultant azomedine ylides 3 cim be trapped with checton deficien dipolarophiles to give access to usefullyfunctionalised pyorlidimes 4

In the light of the sers widesprad occumence of γ-lactam rings, booth in naturally occurring molecules, and in phamacologically important sytutic systems. we were intrigucd by the possibility of producing such a framework directly from a 1.3-diputar evehaddition strateg. Although we were aware of a number of reports
on the oxidation of pyrmolidine rings ${ }^{+}$(including proline derivatives ${ }^{5}$) to yield γ-lactams, no direct general approach appeared to he availahk".

We now report that the ditholane-isocyanate imminium methylide 6 , generated from desilytation of readily available salt 5 , acts as a synthetic equivalent of the carbonyl-fused azomethine ylide 7 , and undergoes efficient cycloaddition to electron deficient dipolarophiles to yield lactams 9 following hydrolysis of the intermediate dithiolanes $\mathbf{8}$ (Scheme 1)

The dipole precursor 5 is casily prepared va amination of carbon disulphide to yield the sodium dithincartannate 10 which inalkylated to yield the iminoditholane $\mathbf{1 1}$. This then undergoes facile alkylation to yield 5 (Scheme 2). The salt 5 prepared as its triflate, is a stable crystalline solid and can be stored under anhydrous conditions for months without any noticeath decomposition

Scheme 2

Saht 5 as tound to mderocrificion destylation using cesium thonde and, in the presence of electron deficient ofelins". yielded dithiolane-containing adducs $\mathbf{8}^{\prime \prime}$. presumahly via intermediate dipole $\mathbf{6}$. The results of a number of cyeloadditions anc summanced (Tahla \|)
 and yielded a mixture of regionmers with the 'proximal' isomer (with respect to the ester and dithiolane moieties predominating. In addition. cychaddition to non-cychic disubstituted oletins (entries 3 and 4) is sterenpecific. although in the case ol addition to dime hyl maleate (entry 4) the initial cis-adduct is unstable and
underwent slow conversion over a number of weeks to the roms-isomer. Attempted chromatography resulted in rapid and complete stereomutation and only the trans-isomer could he isolated.

"1.1 cquivalent mess indiated otherwise: "All new compounds sane sitisfactory spectroseopic and analytical data consistent with The indicated structures: 'vield extmated from 'II NMR sectmon st unpurified material: "total isolated yield of lactams obtained as

It appears these cyelsadducts ate the lirst reported ditholane-protected forms of lactams and thus we were keen to exphore their beharmor upon attempted deprotemon. The oxygen analogues of these species are known

dithiolane-containing cycloadducts 8 to a mixture containing $\mathrm{HgO} / \mathrm{BF}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}{ }^{11}$ gave only highly insoluble mixtures. Fortunately, a number of alternative hydrolytic procedures are known ${ }^{12}$, and by applying the oxidative methodology reported by $\mathrm{Hojo}{ }^{1}:\left(\mathrm{SO}_{2} \mathrm{Cl}_{2} / \mathrm{SiO}_{2}\right.$), excellent yields of lactams were ohtained (Table 1).

The moderate regiochemistry displayed by dipole 6 (entry 2) was surprising as upon first inspection, it would appear that the termini of the dipole are highly dissimilar and thus would be expected to exhibit good regiochemical control with nun-symmetrical dipolarophiles. We have thus calculated the energies and coefficients for the HOMO and I LIMO of this dipole using a semi-empirical method ${ }^{14}$. These calculations reveal that in fact. dipole 6 is electronically rather symmetric, this being particularly the case for the coefficients in the HOMO whose interaction with the LIMO of the dipolarophile will have the most significant contribution to the energy of the transition state ${ }^{\prime \prime}$ (Figur 1). Additionally, the calculations also predict that this dipole is not planar but possesses a pucker within the ditholane ring system (Figure 2).

Figure 1. FM()LCAOCoblicionts and energy leveh.

Figure 2. Model of aromethine ylide 6.

Work difected lowards the synthetic manipulation of this novel entry into γ-lactam containing natural products is now in progests.

Acknowledgement

We thank the EPSRC and Glaxu Group Rescard for fitrancial support.

References and notes

6. Phosphate-stabilised azomethine yhen have been med on prepare a limited ange of γ-lactams see: Martin, S.F: Cheavens, T.H. Tetrahedron Lett. 1989. 30, 7()17.
7. Iemo, Y.: Nakal. I: ()kawari. M. Bull. Chem Sof: Japom. 1970. +3. 162
 the ditholane contaming adituct was isolated, untead, (presumahly via im-situ aromatisation) a pyorole and its $2: 1$ Michael adduchs were recoscred (interevtingly, in propormons dependent on the intial equivalence of DMAD).
9. Typical procedure: A solution of the imino ditholane salt $\mathbf{5}$ (hmmon) and the appropriate dipolarophile in anhydrous acetonitrile
 sbiming and when i l.c indicated a complete reaction. (hihbomethane (20 ml) was added and the reaction mixture filtered through

12. Sechach. D). (monel. B. I. Smolicos 1977. 357.
13. Hojo, Ma: Masida. R. Sinih Comm, 1976. 678
14. Perfomed using the AMI lhmilomath withan MOPAC won a + proceson parallel computer with full geometry optimisation.

