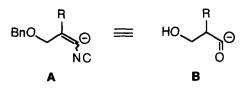


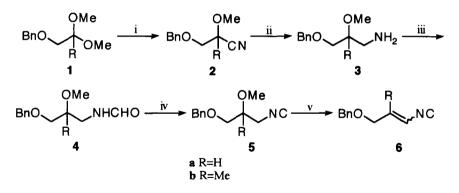
\$0040-4039(96)00312-7


3-Benzyloxy-1-isocyanopropenes. Synthesis and Use as 3-Hydroxypropanoyl Anion Equivalents

Kazuhiro Kobayashi,* Hideki Akamatsu, Keiichiro Takada, Osamu Morikawa, and Hisatoshi Konishi

Department of Materials Science, Faculty of Engineering, Tottori University, Koyama-minami, Tottori 680, Japan

Abstract: New acyl anion equivalents bearing a hydroxyl group at the β -position have been developed. Treatment of 3-benzyloxy-1-isocyanopropenes with lithium diisopropylamide (LDA) in THF at -78 °C generated the 1-lithio compounds, which reacted with alkyl halides to afford the corresponding 1-alkylated products in good yields. Acid hydrolysis of these alkylated products followed by hydrogenolysis of the resulting β -benzyloxyethyl ketones led to β -hydroxyethyl ketones. Copyright © 1996 Elsevier Science Ltd


Although the successful use of metallated organic compounds as acyl anion equivalents has been reported,¹ surprisingly only a few acyl anion equivalents bearing a functional group have been developed.² In this paper we wish to report that 3-benzyloxy-1-isocyano-1-propenyl anions (**A**) generated from the deprotonation of 3-benzyloxy-1-isocyanopropenes **6** can serve as 3-hydroxypropanoyl anion equivalents (**B**).

The procedure we have developed for the synthesis of 3-benzyloxy-1-isocyanopropenes **6** is outlined in Scheme 1. Benzyloxy acetals 1^3 were first converted into the corresponding methoxy nitriles **2** by reaction with cyanotrimethylsilane in the presence of boron trifluoride diethyl etherate. Reduction of these nitriles with lithiumaluminum hydride (LAH) gave the corresponding amines **3**, conversion of which into formamides **4** was effected in refluxing ethyl formate. Subsequent dehydration of **4** with phosphorous oxychloride and triethylamine gave the corresponding isocyanides **5**. Finally, treatment of **5** with lithium diisopropylamide (LDA) in tetrahydrofuran gave **6**. In Table 1 are listed the yields of the products. Compounds **6a** and **b** were both isolated as pale yellow liquid compounds by distillation and characterized by IR and ¹H NMR spectroscopies.⁶ Both compounds are rather unstable, but storable at freezer temperature under argon for a few days.

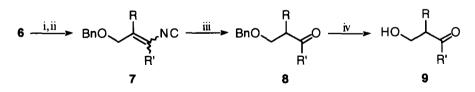
The vinyl isocyanide 6a could be lithiated with LDA in THF at -78 °C and the lithium reagent was treated

Reagents and conditions: i, Me₃SiCN, BF₃(OEt₂), CH₂Cl₂, 0 $^{\circ}$ C; ii, LiAlH₄, Et₂O, 0 $^{\circ}$ C to r. t.; iii, HCO₂Et, reflux; iv, POCl₃, Et₃N, THF, 0 $^{\circ}$ C; v, LDA, THF, -78 $^{\circ}$ C.

Scheme 1.

 Table 1. Preparation of 3-benzyloxy-1-isocyanopropenes 6

Entry	R	$2(\%)^{a}$	3 (%) ^a	$4(\%)^{a}$	5 (%) ^a	6 (%) ^a
a	н	90	95	90	81	81 ^b
b	Me	92	89	8 6	83	88 ^b


^aIsolated yields. ^bRatio of Z/E= ca. 1:1

with alkyl halides. The alkylation reactions proceeded cleanly and were complete within 1 h at the same temperature, and gave the α -alkylation products **7a-d** in good yields. The lithiation and following alkylation with methyl iodide were found to be unaffected when the 2-hydrogen of **6a** was replaced by a methyl substituent, and the desired alkylated product **7e** could be obtained in a good yield. Table 2 includes results of the alkylation experiments. Products via the allylic metallation were not detected in these experiments. It is interesting to note that lithiation of **6** occurs exclusively at the α -position, not at the allylic position.⁷

A typical experimental procedure is given for the preparation of **7a**. To a stirred solution of LDA (1.0 mmol) in THF (10 ml) at -78 °C was added dropwise **6a** (0.17 g, 1.0 mmol). After 10 min iodomethane (0.16 g, 1.1 mmol) was added. The mixture was stirred for 1 h, and then quenched with saturated NH₄Cl solution and extracted with Et₂O. The extract was washed with brine, dried over anhyd MgSO₄, and evaporated. Purification of the residue by distillation using Kugelrohr afforded **7a** (0.18 g, 96%).⁸

Hydrolysis of compounds **7a-e** with concentrated HCl in THF at 0 °C for 10 min afforded the corresponding β -benzyloxyethyl ketones **8a-e** in high yields.⁹ Hydrogenolysis of **8a-e** with 10% Pd on activated carbon under an atmosphere of hydrogen in ethyl acetate at room temperature led to the corresponding β -hydroxyethyl ketones **9a-e** in good yields.¹⁰ These results are also listed in Table 2. This class of compounds is of interest as precursors for the generation of aldolate dianions^{11a,b,12a} and as key intermediates in construction of a variety of important products,^{12,13a} but their preparation by aldol-type processes can be difficult .¹⁴ Although syntheses of **9a** and **e** by the reactions of formaldehyde with appropriate ketones have been reported previously, it is difficult to realize good yields under the normal liquid-phase condensation conditions due to the general complicated side reactions: reaction with more than one molecule of formaldehyde,

subsequent reactions of the initially formed product such as dehydration, cyclization and polymerization, and self-condensation of the starting ketones.^{11c,15a,16b} Compounds $9b^{11}$ and $9c^{16}$ are known in the literature, but their preparation by aldol-type processes has not yet been reported. Compound 9d is a new product, and it is unlikely that this compound can be prepared by simple aldol-type processes.

Reagents and conditions: i, LDA, THF, -78 °C; ii, R'X, -78 °C; iii, aq. HCl, THF, 0 °C; iv, H₂ (1 atm), cat. 10% Pd/C, AcOEt, r.t.

Scheme	2.
--------	----

Entry	6	R'X	7 (Yield/%) ^a	8 (Yield/%) ^a	9 (Yield/%) ^a
1	6a	Mel	7a (96) ^b	8a ^d (91)	9 a ^e (71)
2	6a	EtBr	7b (77) ^b	8b (89)	9b ^f (66)
3	6a	<i>n</i> -BuBr	7c (70) ^b	8c (87)	9c^g (67)
4	6a	BnBr	7d (83) ^c	8d (88)	9d (71)
5	6b	Mel	7e (78) ^b	8e (78)	9e ^h (90)

Table 2. Preparation of 7 and their conversion into 9.

^aIsolated yields. ^bZ/E =ca. 1:1. ^cZ/E =ca. 7:3. ^dRef. 13. ^eIdentified by a direct comparison with a sample obtained commercially. ^fRef. 11. ^gRef. 16. ^hRef. 15.

The results reported above demonstrate that 3-benzyloxy-1-isocyanopropenes can be used for the generation of 3-hydroxypropanoyl anion equivalents, and that the present process provides an efficient method for the preparation of β -hydroxyethyl ketones. Work on further synthetic applications utilizing reactions of these isocyanides with other electrophiles is now in progress and will be reported in due course.

REFERENCES AND NOTES

- For an excellent review of acyl anion equivalents, see Ager, D. J. In Umpoled Synthons; Hase, T. A. Ed.; Wiley: New York, 1987; p.19.
- For reports concerning on acyl anion equivalents bearing a functional group, see Carlson, R. M.; Isidor, T. L. Tetrahedron Lett., 1973, 4819; Carlson, R. M; Jones, R. W.; Hatcher, A. S. Tetrahedron Lett., 1975, 1741; Murakami, M.; Kawano, T.; Ito, Y. J. Am. Chem. Soc., 1990, 112, 2437.
- Compound 1a was synthesized following the reported procedure.⁴ Compound 1b was synthesized from 1-benzyloxy-2-propanone⁵ by the standard acetalization procedure.
- 4. Sheeham, J. C.; Goodman, M.; Richardson, L. J. Am. Chem. Soc., 1955, 77, 6391.
- 5. Manzocchi, A.; Fiecchi, A.; Santaniello, E. Synthesis, 1987, 1007.
- 6. 6a: Bp 113-115 °C/0.8 Torr; IR (neat) 2126, 1648, 1119 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ 4.05 (1H, dd, J=4.2, 1.3 Hz), 4.29 (1H, d, J=4.4 Hz), 4.53 (2H, s), 5.6-6.4 (2H, m), 7.33 (5H, s); MS,

m/z (%) 173 (M+, 1.6), 172 (12), 91 (100). HR MS Found: m/z 173.0820. Calcd for C₁₁H₁₁NO: M, 173.0840. **6b**: Bp 220 °C (bath temp)/2.0 Torr; IR (neat) 2122, 1102 cm⁻¹; ¹H NMR (60 MHz, CCl₄) δ 1.75-1.9 (3H, m), 3.86 (1H, s), 4.26 (1H, s), 4.43 (2H, s), 5.45-6.6 (0.5H, m), 5.7-5.85 (0.5H, m), 7.26 (5H, s); MS, m/z (%) 187 (M+, 2.1), 186 (19), 91 (100). HR MS Found: m/z 187.0995. Calcd for C₁₂H₁₃NO: M, 187.0997.

- Schoellkopf, U. Angew. Chem. Int. Ed. Engl., 1977, 16, 339. Lithiation of vinyl isocyanides with butyllithium and reactions of the resulting vinyllithium compounds with electrophiles have been reported previously; Schoellkopf, U.; Staffurst, D.; Jentsch, R. Liebigs Ann. Chem., 1977, 1167.
- Selected physical and spectral data of 7 are as follows. 7a: Bp 107-110 °C (bath temp)/0.35 Torr; IR (neat) 2110, 1665, 1070 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ 1.92 and 1.98 (combined 3H, 2br. s), 4.03 (1H, d, *J*=6.8 Hz), 4.21 (1H, d, *J*=5.3 Hz), 4.50 and 4.52 (2H, 2s), 5.45-6.05 (1H, m), 7.33 (5H, s); MS, *m*/z (%) 187 (M+, 1.5), 186 (5.5), 118 (16), 96 (18), 91 (100). HR MS Found: *m*/z 187.0984. Calcd for C₁₂H₁₃NO: M, 187.0997. 7e: Bp 170 °C (bath temp)/1.4 Torr; IR (neat) 2108, 1661, 1073 cm⁻¹; ¹H NMR (60 MHz, CCl₄) δ 1.74 (1.5H, s), 1.90 (4.5H, s), 3.89 (1H, s), 4.12 (1H, s), 4.41 (2H, s), 7.17 (5H, s); MS, *m*/z (%) 201 (M+, 1.9), 200 (3.6), 91 (100). HR MS. Found: *m*/z 201.1160. Calcd for C₁₃H₁₅NO: M, 201.1154.
- Selected physical and spectral data of 8 are as follows. 8b: R_f 0.44 (1:3, EtOAc-hexane); IR (neat) 1714, 1105 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ 1.05 (3H, t, J=7.2 Hz), 2.46 (2H, q, J=7.2 Hz), 2.69 (2H, t, J=6.4 Hz), 3.74 (2H, t, J=6.4 Hz), 4.50 (2H, s), 7.31 (5H, s); MS, m/z (%) 193 (0.98), 192 (M+, 0.37), 120 (13), 91 (100). HR MS. Found: m/z 192.1139. Calcd for C₁₂H₁₆O₂: M, 192.1139. 8c: Bp 104-107 °C (bath temp)/0.35 Torr; IR (neat) 1715, 1103 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ 0.90 (3H, t, J=6.5 Hz), 1.1-1.7 (4H, m), 2.44 (2H, t, J=7.3 Hz), 2.69 (2H, t, J=6.4 Hz), 3.74 (2H, t, J=6.4 Hz), 4.50 (2H, s), 7.31 (5H, s); MS, m/z (%) 192 (27), 105 (100). HR MS. Found: m/z 220.1439. Calcd for C₁₄H₂₀O₂: M, 220.1464.
- 9d: R_f 0.41 (1:1, EtOAc-hexane); IR (neat) 3360, 1710, 1051 cm⁻¹; ¹H NMR (90 MHz, CDCl₃) δ
 2.2-2.5 (1H, br), 2.69 (2H, t, J=5.5 Hz), 3.6-3.9 (4H, m), 7.1-7.4 (5H, m); MS, m/z (%) 164 (M⁺, 16), 91 (66), 73 (100). HR MS. Found: m/z 164.0822. Calcd for C₁₀H₁₂O₂: M, 164.0838.
- 11. a) Martin , V. A.; Albizati, K. F. J. Org. Chem., **1988**, 53, 5986; b) J. Am. Chem. Soc., **1990**, 112, 6965; c) Hitchcock, S. R.; Perron, F.; Martin, V. A.; Albizati, K. F. Synthesis, **1990**, 1059.
- E.g., inter alia: a) Martin, V. A.; Perron, F.; Albizati, K. F. Tetrahedron Lett., 1990, 31, 301; b) Cottier, L.; Descotes, G.; Grenier, M. F.; Metras, F. Tetrahedron, 1981, 37, 2515; c) White, J. D.; Carter, J. P.; Kezar, III, H. S. J. Org. Chem., 1982, 47, 929.
- a) Hoffmann, C. H.; Wagner, A. F.; Wilson, A. N.; Walton, E.; Shunk, C. H.; Wolf, D. E.; Holly, F. W.; Folkers, K. J. Am. Chem. Soc., 1957, 79, 2316; b) Tsuji, J.; Nagashima, H.; Hori, K. Tetrahedron Lett., 1982, 23, 2679.
- 14. For syntheses of these derivatives based on methods other than aldol-type processes, see refs. 11c and 16b, and references cited therein.
- a) Hays, J. T.; Hager, G. F.; Engelmann, H. M.; Spurlin, H. M. J. Am. Chem. Soc., 1951, 73, 5369;
 b) Santelli, M.; Viala, J. Tetrahedron, 1978, 34, 2327.
- a) Koulkes, M. Bull. Soc. Chim. Fr., 1957, 127; b) Molander, G. A.; Hahn, G. J. Org. Chem., 1986, 51, 2596.

(Received in Japan 25 December 1995; revised 13 February 1996; accepted 15 February 1996)