Chelate synthesis of 3-ethoxycarbonyl-4-hydroxy-2-trifluoromethylpyridine from ethyl acetoacetate and trifluoroacetonitrile

V. A. Dorokhov,* L. S. Vasil'ev,* F. E. Surzhikov, and V. S. Bogdanov

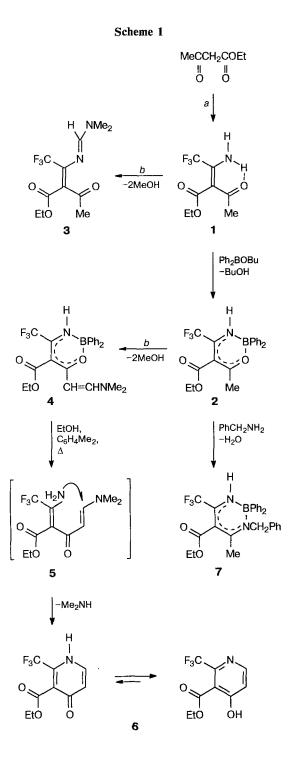
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328

Ethyl 2-acetyl-3-amino-4,4,4-trifluoro-2-butenoate was synthesized by treatment of ethyl acetoacetate with CF_3CN in the presence of Ni(acac)₂. Condensation of the diphenylboron chelate of the former with dimethylformamide dimethylacetal followed by refluxing in ethanol yielded 3-ethoxycarbonyl-4-hydroxy-2-trifluoromethylpyridine.

Key words: ethyl acetoacetate, trifluoroacetonitrile, $Ni(acac)_2$, catalysis, ethyl 2-acetyl-3-amino-4,4,4-trifluoro-2-butenoate, boron chelates, dimethylformamide dimethylacetal, 3-ethoxycarbonyl-4-hydroxy-2-trifluoromethylpyridine.

Heterocycles containing a CF_3 group attract attention as potential biologically active compounds.^{1,2} It has previously been found³ that the reaction of trifluoroacetonitrile with acetylacetone in the presence of catalytic amounts of nickel acetylacetonate, (Ni(acac)₂), results in 3-acetyl-4-amino-5,5,5-trifluoro-3-penten-2-one, which is a convenient building block for synthesizing trifluoromethyl derivatives of pyridines and pyrimidines.^{3,4}

In a continuation of the studies on the synthesis of N-heterocycles, we elaborated a facile method for obtaining the hitherto unknown 3-ethoxy-4-hydroxy-2trifluoromethylcarbonylpyridine from trifluoroacetonitrile and ethyl acetoacetate. It was found that ethyl acetoacetate readily adds to CF₃CN in the presence of 1 mol.% of Ni(acac)₂ to give ethyl 2-acetyl-3-amino-4,4,4-trifluoro-2-butenoate (1) (Scheme 1). The reaction occurs more slowly than in the case of acetylacetone and requires 4-6 h to come to completion. The process occurs in neutral media and hence is not accompanied by deacetylation of enaminone 1, which occurs in aqueous-alcoholic media in the presence of basic catalysts.⁵ In attempts to avoid the deacetylation by performing the reaction in anhydrous media in the presence of Na metal, the formation of compound 1 is accompanied by strong resinification.


Enaminone 1 purified by sublimation *in vacuo* is a white crystalline compound soluble in ether, benzene, and chloroform, weakly soluble in pentane, and insoluble in water. The ¹H NMR spectrum of compound 1 contains one set of signals, and one proton of the NH₂ group participates in the formation of an intramolecular hydrogen bond (IHB) ($\delta = 10.5$, while for free NH, $\delta = 6.0$). A narrow band at 3480 cm⁻¹ in the IR spectrum of compound 1 (NH stretching vibration region) corresponds to the free NH group, while a broad band at

 $3100-3250 \text{ cm}^{-1}$ corresponds to that involved in an IHB. It can be believed that enaminone 1 exists in solutions as a *E*-form, since the acetyl group is more likely to participate in IHB than the ethoxycarbonyl group.

Compound 1 reacts with BuOBPh₂ to give boron chelate 2, a light-yellow crystalline compound soluble in ether, benzene, and acetone and poorly soluble in hexane. In the ¹H NMR spectrum of chelate 2, the signal of <u>Me</u>CO is shifted downfield (δ 2.62) relative to the free ligand (δ 2.31), while in the ¹³C NMR spectrum, the signal of Me<u>C</u>O chelate 2 is observed at a higher field (δ ~191) than in the case of enaminone 1 (δ ~197) (*cf.* the data on the changes in the chemical shifts of the C atom of the carbonyl group in α -oxoketene aminals due to chelate formation^{6,7}). These data suggest that coordination with B involves the NH₂ and acetyl groups, like in the case of 4-amino-5,5,5-trifluoro-3-penten-2one described by us.⁸

In the previous communications, we presented an original strategy for synthesizing functionalized 4-hydroxypyridines (pyridones) via diphenyl- or difluoroboron chelates of diacetylketene N.N- and N,S-acetals,^{9,10} as well as 4-amino-5,5,5-trichloro-3-penten-2-one and its acetyl derivative.¹¹ The key step in these syntheses involves condensation of amide acetals at the Me group directly linked with the boron-chelate ring. It was found that complex 2 can be used in similar transformations. In fact, chelating protects standard nucleophilic centers and activates nontraditional ones in functionalized enaminones. For example, dimethylformamide dimethylacetal (DMF DMA) reacts with enaminone 1 at the NH_2 group to give formamidine 3, which was isolated as a mixture of E- and Z-isomers (the ¹H NMR spectrum displays a double set of signals with a ≈ 2 : 1 ratio), whereas the reaction of DMF DMA

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1329–1331, July, 1995. 1066-5285/95/4407-1283\$12.50 \$1995 Plenum Publishing Corporation

Reagents and conditions. *a*. CF₃C=N, Ni(acac)₂, CH₂Cl₂, ~20 °C. *b*. (MeO)₂CHNMe₂.

with chelate 2 gives a product of condensation at the Me group, complex 4. Decomposition of the latter by refluxing in ethanol is accompanied by cyclization of the free ligand 5 liberated into hydroxypyridine 6. The structure of pyridine 6 was confirmed by spectral methods. Judging by 13 C chemical shifts (in DMSO-d₆), compound 6

(C(4), δ 162.70 and C(6), δ 151.23) is similar to 4-methoxypyridine (δ 164.9 and 150.7) and strongly differs from 1-methyl-4-pyridone (δ 176.7 and 141.4).¹² In addition, the chemical shifts of C(4) and C(6) for compound **6** differ only slightly from those for 3-acetyl-4-hydroxy-2-trichloromethylpyridine, which possesses a similar structure (δ 162.41 and 148.52), in which the equilibrium pyridone \leftarrow hydroxypyridine is strongly shifted to the right.¹¹ It can therefore be believed that the hydroxypyridine structure, which is stabilized by an intramolecular hydrogen bond O-H...O, is also more typical of compound **6**.

Chelate 2 is characterized by a transformation on treatment with primary amines to give β -diiminate complexes. For example, heating compound 2 with benzy-lamine gives chelate 7 (*cf.* similar reactions of boron chelates obtained from 4-amino-5,5,5-trifluoro-3-penten-2-one⁸ and its 3-acetyl derivative¹³).

Experimental

¹H NMR spectra were recorded on a Bruker WM-250 spectrometer (250.13 MHz), and ¹³C NMR spectra were obtained on a Bruker AM-300 instrument (75.47 MHz) relative to SiMe₄. IR spectra were recorded on a UR-20 spectrophotometer. Mass spectra were obtained on a Varian MAT-60 mass spectrometer.

Ethyl 2-acetyl-3-amino-4,4,4-trifluoro-2-butenoate (1). Ethyl acetoacetate (15.0 g, 0.12 mol), Ni(acac)₂ (0.35 g), and CH₂Cl₂ (20 mL) were placed in a three-necked flask equipped with a condenser cooled by a mixture of acetone with solid CO₂, a magnetic stirrer, and an inlet for CF₃CN. The CF₃CN (16.38 g, 0.17 mol) was slowly passed over a period of 4–6 h, and the reaction mixture was kept for 12 h. The solvent was evaporated *in vacuo*, and pentane was added to the solid residue. The precipitate was filtered off, washed with pentane, and dried by sublimation *in vacuo* (100 °C at 1–2 Torr) to give 18.98 g (73 %) of compound 1, m.p. 64–65 °C (*cf.* the literature data:⁵ m.p. 62–63 °C).

IR (CH₂Cl₂), v/cm⁻¹: 3480 (NH), 3250–3100 (NH), 1720 (C=O), 1640, 1600 (the region of multiple bonds). ¹H NMR (CDCl₃), δ : 1.21 (t, 3 H, <u>CH₃CH₂</u>); 2.18 (s, 3 H, <u>CH₃CO</u>); 4.14 (q, 2 H, CH₂O); 6.0 (br.s, 1 H, NH); 10.5 (br.s, 1 H, NH).

Diphenylboron complex of ethyl 2-acetyl-3-amino-4,4,4-trifluoro-2-butenoate (2). Ph₂BOBu (9.1 g, 38 mmol) was added under argon to compound 1 (7.9 g, 35 mmol) in hexane (20 mL), and the reaction mixture was stirred for 3–4 h (the reaction was monitored by TLC). The mixture was concentrated *in vacuo*, and pentane (30 mL) was added to the residue. Filtration gave 8.25 g (68 %) of chelate 2, m.p. 131–132 °C. MS, *m/z*: 312 [M–Ph]⁺. IR (KBr), v/cm⁻¹: 3250 (NH); 1700 (C=O). ¹H NMR, CDCl₃, δ : 1.29 (t, 3 H, CH₃CH₂); 2.62 (s, 3 H, CH₃CO); 4.21 (q, 2 H, CH₂O); 7.22–7.42 (m, 10 H, 2 Ph); 7.65 (br.s, 1 H, NH). ¹³C NMR (CDCl₃), δ : 13.55 (qt, ¹J_{C,H} = 128 Hz, ²J_{C,H} = 2.8 Hz, CH₃); 24.90 (q, ¹J_{C,H3} = 131 Hz, CH₃CO); 61.36 (tq, ¹J_{C,H} = 147 Hz, ²J_{C,H} = 4.6 Hz, OCH₂); 101.48 (d, J_{C,H} = 7 Hz, C(2)); 118.79 (qd, ¹J_{C,F} = 281 Hz, ³J_{C,H} = 7 Hz, CF₃); 127.13, 127.79, 131.75, 146.0 (2 Ph); 157.05 (qd, ²J_{C,F} = 35 Hz, ²J_{C,H} = 4 Hz, C(3)); 164.10 (s, O–C=O); 191.48 (q, ²J_{C,H} = 6.5 Hz, CH₃CO). Found (%): C, 61.65; H, 4.92;

F, 14.91; N, 3.31. $C_{20}H_{19}BF_3NO_3$. Calculated (%): C, 61.72; H, 4.92; F, 14.65; N, 3.60.

Ethyl 2-acetyl-3-(dimethylaminomethylene)amino-4,4,4-trifluoro-2-butenoate (3). DMF DMA (0.78 g, 6.6 mmol) was added to a solution of compound 2 (1.0 g, 4.4 mmol) in ether (10 mL), and the mixture was stirred for 1 h. The reaction mixture was concentrated *in vacuo*, and the residue was chromatographed on a column with SiO₂ using benzene as the eluent to give 0.78 g (63 %) of compound 3, m.p. 32–35 °C. MS, m/z: 280 [M]⁺⁺. ¹H NMR, CDCl₃, δ : 1.24 t and 1.29 t (3 H, CH₃; here and below, the first value refers to the minor isomer); 2.38 s and 2.25 s (3 H, CH₃CO); 3.07 (s, 6 H, (CH₃)₂N); 4.16 q and 4.24 q (2 H, CH₂O); 7.34 s and 7.36 s (1 H, CHN). Found (%): C, 47.27; H, 5.37; N, 10.28. C₁₁H₁₅F₃N₂O₃. Calculated (%): C, 47.14; H, 5.47; N, 10.77.

Diphenylboron complex of ethyl 2-(1-amino-2,2,2-tri-fluoroethylidene)-5-dimethylamino-3-oxo-4-pentenoate (4). A mixture of compound **2** (2.7 g, 7 mmol) and DMF DMA (2.47 g, 21 mmol) in ether (20 mL) was refluxed for 2–3 h. The crystals that precipitated after concentrating *in vacuo* were filtered off and washed with pentane to give 2.86 g (93 %) of complex **4**, m.p. 160–161 °C. MS, m/z: 367 [M–Ph]⁺. IR (KBr), v/cm^{-1} : 3320 (NH), 1680 (C=O). ¹H NMR, CDCl₃, δ : 1.25 (t, 3 H, <u>CH</u>₃CH₂O); 3.02 (s, 3 H, CH₃N) and 3.24 (s, 3 H, CH₃N); 4.15 (q, 2 H, CH₂O); 6.35 (d, 1 H, CH=C, J = 12 Hz); 6.91 (br.s, 1 H, NH); 7.12–7.50 (m, 10 H, 2 Ph); 8.05 (d, 1 H, NCH=, J = 12 Hz). Found (%): C, 61.82; H, 5.71; F, 12.91. C₂₃H₂₄BF₃N₂O₃. Calculated (%): C, 62.18; H, 5.44; F, 12.83.

3-Ethoxycarbonyl-4-hydroxy-2-trifluoromethylpyridine (6). A mixture of compound **4** (0.9 g, 2 mmol), ethanol (1 mL), and xylene (~20 mL) was heated for 14–15 h at 115–120 °C, the solvent was distilled off *in vacuo*, and the residue was chromatographed on a column with SiO₂ (using initially benzene and then chloroform as eluents) to give 0.4 g (85 %) of compound **6**, m.p. 115–116 °C (from benzene-hexane). MS, *m/z*: 235 [M]⁺. IR (CH₂Cl₂), v/cm⁻¹: 1680 (CO). ¹H NMR, CDCl₃, δ : 1.42 (t, 3 H, CH₃); 4.80 (q, 2 H, CH₂O); 7.10 (d, 1 H, H(5), J = 5.70 Hz); 8.5 (d, 1 H, H(6), J = 5.7 Hz); 11.29 (br.s, 1 H, OH). ¹³C NMR (DMSO-46), δ : 13.77 (q, ¹J_{C,H} = 127 Hz, CH₃); 61.63 (t, ¹J_{C,H} = 149 Hz, OCH₂); 114.53 (dd, ¹J_{C,H} = 167 Hz, ²J_{C,H} = 8 Hz, C(5)); 118.11 (s, C(3)); 121.33 (q, ¹J_{C,F} = 275 Hz, CF₃); 143.68 (q, ²J_{C,F} = 33 Hz, C(2)); 151.23 (d, ¹J_{C,H} = 183 Hz, C(6)); 162.70 (d, ³J_{C,H} = 7.3 Hz, C(4)); 164.23 (t, ³J_{C,H} = 3.5 Hz, C=O). Found (%): C, 45.96; H, 3.67; F, 24.04; N, 5.78. C9H₈F₃NO₃. Calculated (%): C, 45.96; H, 3.43; F, 24.24; N, 5.95.

Diphenylboron complex of ethyl 3-amino-2-(1-benzyliminoethyl)-4,4,4-trifluoro-2-butenoate (7). A mixture of chelate 2 (0.50 g, 1.3 mmol) and benzylamine (0.41 g, 3.9 mmol) in benzene (10 mL) was refluxed for 2 h. The solvent was distilled off *in vacuo*, and the residue was chromatographed on a column with SiO₂ using chloroform as the eluent to give 0.39 g (64 %) of complex 7, m.p. 114–115 °C. MS, m/z: 401 $[M-Ph]^+$. IR (KBr), v/cm^{-1} : 3360 (NH); 1710 (C=O). ¹H NMR (CDCl₃), δ : 1.26 (t, 3 H, <u>CH</u>₃CH₂); 2.40 (s, 3 H, CH₃); 4.16 (q, 2 H, CH₂O); 4.77 (s, 2 H, Ph<u>CH₂</u>); 6.67 (br.s, 1 H, NH); 6.7–6.8 and 7.08–7.48 (m, 15 H, 3 Ph). Found (%): C, 67.99; H, 6.11; N, 6.10. C₂₇H₂₆BF₃N₂O₂. Calculated (%): C, 67.78; H, 5.44; N, 5.86.

This study was financially supported by the Russian Foundation for Basic Research (Grant No. 94-03-08964).

References

- 1. R. Fillar, in Organofluorine chemicals and their industrial applications, Ed. R. E. Bank, Ellis Horwood, London, 1979, 123.
- 2. K. Burger, D. Hubl, and K. Geth, Synthesis, 1988, 194.
- V. A. Dorokhov, A. V. Komkov, L. S. Vasil'ev, O. G. Azarevich, and M. F. Gordeev, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 2639 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2311 (Engl. Transl.)].
- L. S. Vasil'ev, O. G. Azarevich, V. S. Bogdanov, B. I. Ugrak, M. N. Bochkareva, and V. A. Dorokhov, *Zh. Org. Khim.*, 1994, 1702 (in Russian).
- N. D. Bondarchuk, B. B. Gavrilenko, and G. I. Derkach, *Zh. Org. Khim.*, 1968, 1710 [*J. Org. Chem.*, 1968 (Engl. Transl.)].
- V. A. Dorokhov and M. A. Prezent, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 888 [*Russ. Chem. Bull.*, 1994, **43**, 832 (Engl. Transl.)].
- V. A. Dorokhov, M. A. Prezent, and V. S. Bogdanov, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 1638 [*Russ. Chem. Bull.*, 1994, 43, 1550 (Engl. Transl.)].
- S. L. S. Vasil'ev, O. G. Azarevich, V. S. Bogdanov, M. N. Bochkareva, and V. A. Dorokhov, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 2657 [*Russ. Chem. Bull.*, 1992, 41, 2104 (Engl. Transl.)].
- 9. V. A. Dorokhov and M. F. Gordeev, *Izv. Akad. Nauk* SSSR, Ser. Khim., 1989, 2874 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, **38**, 2638 (Engl. Transl.)].
- V. A. Dorokhov, M. A. Prezent, and V. S. Bogdanov, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 1118 [*Russ. Chem. Bull.*, 1995, 44, 1080 (Engl. Transl.)].
- 11. L. S. Vasil'ev, O. G. Azarevich, V. S. Bogdanov, B. I. Ugrak, and V. A. Dorokhov. *Izv. Akad. Nauk, Ser. Khim.*, 1994, 1342 [*Russ. Chem. Bull.*, 1994, **43**, 1282 (Engl. Transl.)].
- 12. U. Vogel and W. von Philipsborn, Org. Magn. Res., 1973, 5, 551.
- L. S. Vasil'ev, F. E. Surzhikov, O. G. Azarevich, V. S. Bogdanov, and V. A. Dorokhov, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 1510 [*Russ. Chem. Bull.*, 1994, **43**, 1431 (Engl. Transl.)].

Received November 9, 1994