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Abstract: Readily avaiiable proiected forms of &-amino-ymesyloxy-a,f-enoates can be converted to protecied dipeptide isosteres,
WI(E)CH=CH]Gly, in high yields by reduction with alkenylcopper reagents.

A recent major advance in the development of protease inhibitors was the replacement of the scissile
peptide bond with "transition-state mimics”.!) It has also recenily been suggested that the backbone
modification of the amide bond of a peptide with an (E)-double bond might provide "(E)-CH=CH isosteres"
possessing high lipophilicity as well as enhanced resistance to biodegradation.?) The (E)-CH=CH- bond
closely resembles the three-dimensicnal shape of the parent amide bond.3} One avenue, which has not been
exploited for the synthesis of W[{E)CH=CH]Gly, is via efficient reductive elimination of various types of -
oxy genated o,B-unsaturated esters.”) Two recent independent publications, describing the synthesis of
(E)-alkene isosteres, W[(E)CF=CH]Gly 1, by Ciba-Geigy 5) and of y[(E)YCH=CH]Gly 2 by Merck, Sharp and
Dohme,® prompt us to report our results (e.g., synthesis of 3) in this arca.
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QOur synthetic strategy for the synthesis of y[(F)CH=CH]Gly is based on the observation that y-mesyloxy-
o, B-unsaturated esters 47 and 57" were readily converted into the i,y-unsaturated ester 6 in high yields by
treatment with alkenylcopper reagents as shown in Scheme 1. Reaction times of 5~ 30 min at - 78 °C were
sufficient for conversion of the mesylates inio the corresponding B,y-unsaturated ester. The olefinic
geometry at the B,y-position in 6 was exclusively desired rrans.
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a) »-Cu[CN)LiBF; (THF, - 78 °C, 83 % yield ); b} 2~Gu({GN)Li (THF, - 76°C, 85 % yield );
MO _ MeO )
c) )%CU(GN)LQ.BF;, .2 LiGl (THF, - 78°C, 93 % yield }; d ) )}ZCULLBFE (THF, .78°C, 85 % yield ]
Scheme 1

This reductive elimination has been successfully applied 10 the synthesis of rrans-alkene isosteres,
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y[(E)CH=CH]G1y.® The resulis in Scheme 2 and Table 1 show that alkenylcopper reagents give
W{(E)YCH=CH|Gly isosteres from corresponding y-oxygenated-c, 5-enoates in satisfactory vields.)
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Scheme 2

Reaction of both +vy-mesyloxy-o,(3-enoates 7 and 8 with either the lower order or the higher crder
alkenyicyanocuprate gave the (E)-alkene isostere 9 in high yields (Table 1, entries ! ~ 4y 10) Likewise, both
(Zy and (E)-y-acetoxy-o,f-enoates 17 and 18 could be converted to Boc-Phe-y[(£)-CH=CH]Gly-OMe 19 by
reaction with the Gilman type reagent (Table 1, entries 10 and 13) or the higher order reagent (Table 1,
entries 11 and 12} in acceptable vields. The desired (£)-stereochemistry of the products was inferred from
the ca. 15.6 Hz coupling constant of the two olefinic protons. The presence of a HNBoc group at the -
position in the substrates 17, 18, 20, and 21 does not exert any influence on the course of the reductive
elimination.

It has recently been reported™ that (£)-CH=CH isosteres easily undergo isomerizasion of the double bond
at the B,y-position to yield o, B-unsaturated carbonyl compounds. However, in our study, the reaction and
work-up conditions used did not cause double bond isomerization to the a,B-position. Homochiral a-alkyl-
(E)-B,venoates,” dipeptide isosteres, ! and w[(E)-CH=CI]Gly-OMe, are usually stable up to at least at 160
9C {1 mm Hg). Consequently, protected dipeptide isosteres such as 9, 12, 13, and 15 could be Kiigelrohr
distilled without any double bond migration to the o,3-position. Treatment of the proiccted isostere 19 with
3N-HC! under reflux for 6 h gave the amino acid hydrochloride 3, mp 134 - 135 9C (recrystallized from a
mixtare of THF-Me,CQO). No sign of isomerization of the double bond in 3 was detected by 14 NMR (in
CD,0D).
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Table 1. Synthesis of Protected W[(E)-CH=CH]Gly Isosteres by Rednctive Elimination of
8-Aminated yMesyloxy or y-Acetoxy-o,-unsaturated Esters with Alkenylcopper Reagents a)

Entry Substrate Reagent Product Yield(%)
1 7 (vinyYCu(CN)MgCl N,0-Isopropylidene Boc-Ser-¥[(E)CH=CH]Gly-OMe 9 99
2 7 (iso-propenyl)Cu(CN)MgBr N,O-Isepropylidene Boc-Ser-‘F{(£)CH=CH]Gly-OMe 9 91
3 7 (vinyl),Cu(CN)(MgCl)y  N.O-Isopropylidene Boc-Ser-¥'[(E)CH=CH]Gly-OMe 9 91
4 8 vinyl)2Cu(CNYMgCl)y N,O-Isopropylidene Boc-Ser-¥[(E)CH=CH}Gly-OMe 9 93
5 10 (vinyD,Cu(CN)(MgCl)y  N,0-Isopropylidene Boc-Thr-¥[(E)CH=CH]Gly-OMe 12 92
6 11 (vinyl}oCu(CN)(MgCl)y N,O-Isopropylidene Boc-Thr-¥[(F)CH=CH]Gly-OMe 12 90
7 13 (vinyl)Cu(CN)(MgCl);  O-TBS N-Boc-Ser-‘F[(E)CH=CH]Gly-OMe 14 75
8 15 (viny)oCa(CN)(MgClyy  O-TBS N-Boc-Thr-¥[(E)CH=CH]Gly-OMe 16 89
9 15 (iso-propenyl)Cu(CN)MgBr O-TBS N—Boc-Thr;‘I’[(E)CH:CH]GlynOMe 16 86

10 17 (viny]),CuMgCLMglI(Cl) Boc-Phe-¥[(EYCH=CH]Gly-OMe 19 86

11 17 (vinyl)Cu(CN)(MgCl), Boc-Phe F[(E)CH=CH]Gly-OMe 19 78

12 18 (vinyl)2Cu{CN)(MgCl), Boc-Phe-\¥[(FYCH=CH]Gly-OMe 19 73

13 18 (vinyl)zCuMgCl.MgI(Cl) Boc-Phe-‘¥[(E)YCH=CH]Gly-OMe 19 78

14 20 (vinyl)2Cu{CN)(MgCl), Boc-Phe-¥[(E)YCH=CH]Gly-OMe 19 97

15 21 (vinyl)oCa(CN)(MgCl)y Boc-Phe-¥Y[(E)CH=CH]Gly-OMe 19 96

a) All reactions were carried out in THF at - 78 ©C for 30 min with 3 to 4 molar equivalents of alkenylcopper reagents. Reported
yields refer to chromatographically purified and spectroscopically pure compounds.
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Scheme 3

Of particular interest was comparison of alkyl (sp3)- and alkenyl (sp2)-copper reagents (Scheme 3).
Whereas alkyl-Cu(CN)M.BF; (alkyl = primary, secondary, and tertiary; M = Li or MgX) readily reacted
with the mesylate 20 to yield the alkylated isosteres 22 in high yields via an anti-Sp2' pathway,!1)
alkenylcoppers such as alkenyl-Cu(CN)MgX (the lower order reagents), (alkenyl),Cu(CN)}(MgX), (the
higher order reagents), and (alkenyl);CuMgX ( the Gilman type reagents) rapidly reacted with 20 @t - 78 °C
to afford the reductive elimination product 19 as the sole product in high yield.

In summary, the present methodology for the synthesis of w{(E)CH=CH]Gly isosteres using alkenylcopper
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reagents has several advantages in terms of (F)-stereoselectivity, efficiency and convenience.

The following procedure is typical for the reductive elimination (Table 1, entry 8). To a stirred
suspension of CuCN (90 mg, 1 mmol) in dry THF (4 mL) under argon at - 78 °C was added by syringe 0.91
mL (2 mmol) of freshly prepared 2.2 M vinylmagnesium chloride in THF. The mixture was allowed to
warm to (0 °C and then stirred at this temperature for 10 min. A solution of mesylate 15 (120 mg, 0.25 mmol)
in dry THF (2 mL) was added to the above reagent at -78 °C with stirring. The stirring was continued for 30
min followed by quenching with 3 mL of a 2 : I saturated NH,ClI - 28 % NH, OH solution. After the usual
work-up, the product was purified by flash chromatography over silica gel with n-hexane - EtCAc (4 : 1) to

give 16 (86 mg, 89 % vield) as a colorless oil of better than 99 % purity (capillary GC and 'H NMR).
Kiigelrohr distillation was at 160 °C (1 mm Hg); [a]'8}, + 7.44° (¢ 0.941, CHCl). The synthesized protected

isostere 16 exhibited YH NMR (in CDCly) and IR (in CHCI4) consistent with the assigned structure.  Anal.
C,H,N.
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