A SIMPLE SYNTHESIS OF $\psi[(E)CH=CH]GIy$ DIPEPTIDE ISOSTERES VIA REDUCTIVE ELIMINATION OF γ -OXYGENATED α,β -ENOATES WITH ALKENYLCOPPER REAGENTS

Nobutaka Fujii,* Hiromu Habashita, Noriko Shigemori, Akira Otaka, and Toshiro Ibuka* Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan

> Miwa Tanaka and Yoshinori Yamamoto* Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Key Words: dipeptide isosteres; $\psi(E)$ CH=CH]Gly; γ -mesyloxy- α , β -enoates; alkenylcopper reagents; reductive elimination

Abstract: Readily available protected forms of δ -amino- γ -mesyloxy- $\alpha_i\beta$ -enoates can be converted to protected dipeptide isosteres, $\psi_i(E)CH=CH_jGly$, in high yields by reduction with alkenylcopper reagents.

A recent major advance in the development of protease inhibitors was the replacement of the scissile peptide bond with "transition-state mimics".¹⁾ It has also recently been suggested that the backbone modification of the amide bond of a peptide with an (*E*)-double bond might provide "(*E*)-CH=CH isosteres" possessing high lipophilicity as well as enhanced resistance to biodegradation.²⁾ The (*E*)-CH=CH- bond closely resembles the three-dimensional shape of the parent amide bond.³⁾ One avenue, which has not been exploited for the synthesis of $\psi[(E)CH=CH]Gly$, is via efficient reductive elimination of various types of γ -oxy genated α,β -unsaturated esters.⁴⁾ Two recent independent publications, describing the synthesis of (*E*)-alkene isosteres, $\psi[(E)CF=CH]Gly$, by Ciba-Geigy ⁵⁾ and of $\psi[(E)CH=CH]Gly$ **2** by Merck, Sharp and Dohme,⁶⁾ prompt us to report our results (*e.g.*, synthesis of **3**) in this area.

Our synthetic strategy for the synthesis of $\psi[(E)CH=CH]Gly$ is based on the observation that γ -mesyloxy- α,β -unsaturated esters 4^{7b} and 5^{7b} were readily converted into the β,γ -unsaturated ester 6 in high yields by treatment with alkenylcopper reagents as shown in Scheme 1. Reaction times of $5 \sim 30 \text{ min at} - 78 \text{ }^{\circ}C$ were sufficient for conversion of the mesylates into the corresponding β,γ -unsaturated ester. The olefinic geometry at the β,γ -position in 6 was exclusively desired *trans*.

This reductive elimination has been successfully applied to the synthesis of trans-alkene isosteres,

 $\psi[(E)CH=CH]Gly.^{8)}$ The results in Scheme 2 and Table 1 show that alkenylcopper reagents give $\psi[(E)CH=CH]Gly$ isosteres from corresponding γ -oxygenated- α,β -enoates in satisfactory yields.⁹⁾

Reaction of both γ -mesyloxy- α , β -enoates 7 and 8 with either the lower order or the higher order alkenylcyanocuprate gave the (*E*)-alkene isostere 9 in high yields (**Table 1**, entries 1 ~ 4).¹⁰) Likewise, both (*Z*) and (*E*)- γ -acetoxy- α , β -enoates 17 and 18 could be converted to Boc-Phe- ψ [(*E*)-CH=CH]Gly-OMe 19 by reaction with the Gilman type reagent (**Table 1**, entries 10 and 13) or the higher order reagent (**Table 1**, entries 11 and 12) in acceptable yields. The desired (*E*)-stereochemistry of the products was inferred from the ca. 15.6 Hz coupling constant of the two olefinic protons. The presence of a HNBoc group at the δ -position in the substrates 17, 18, 20, and 21 does not exert any influence on the course of the reductive elimination.

It has recently been reported⁵⁾ that (*E*)-CH=CH isosteres easily undergo isomerization of the double bond at the β , γ -position to yield α , β -unsaturated carbonyl compounds. However, in our study, the reaction and work-up conditions used did not cause double bond isomerization to the α , β -position. Homochiral α -alkyl-(*E*)- β , γ -enoates,⁷⁾ dipeptide isosteres,¹¹⁾ and ψ [(*E*)-CH=CH]Gly-OMe, are usually stable up to at least at 160 ^oC (1 mm Hg). Consequently, protected dipeptide isosteres such as 9, 12, 13, and 15 could be Kügelrohr distilled without any double bond migration to the α , β -position. Treatment of the protected isostere 19 with 3N-HCl under reflux for 6 h gave the amino acid hydrochloride 3, mp 134 - 135 ^oC (recrystallized from a mixture of THF-Me₂CO). No sign of isomerization of the double bond in 3 was detected by ¹H NMR (in CD₃OD).

Entry	Substrate	e Reagent	Product	Yield	l(%)
1	7	(vinyl)Cu(CN)MgCl	N,O-Isopropylidene Boc-Ser-Ψ[(E)CH=CH]Gly-OMe	9	99
2	7	(iso-propenyl)Cu(CN)MgBr	N,O -Isopropylidene Boc-Ser- $\Psi[(E)$ CH=CH]Gly-OMe	9	91
3	7	(vinyl) ₂ Cu(CN)(MgCl) ₂	N,O -Isopropylidene Boc-Ser- $\Psi[(E)$ CH=CH]Gly-OMe	9	91
4	8	(vinyl) ₂ Cu(CN)(MgCl) ₂	N,O -Isopropylidene Boc-Ser- $\Psi[(E)$ CH=CH]Gly-OMe	9	93
5	10	(vinyl) ₂ Cu(CN)(MgCl) ₂	N,O -Isopropylidene Boc-Thr- $\Psi[(E)$ CH=CH]Gly-OMe	: 12	92
6	11	(vinyl) ₂ Cu(CN)(MgCl) ₂	N,O -Isopropylidene Boc-Thr- $\Psi[(E)CH=CH]Gly-OMe$: 12	90
7	13	(vinyl) ₂ Cu(CN)(MgCl) ₂	O-TBS N-Boc-Ser-Ψ[(E)CH=CH]Gly-OMe 14		75
8	15	(vinyl) ₂ Cu(CN)(MgCl) ₂	O-TBS N-Boc-Thr-Ψ[(E)CH=CH]Gly-OMe 16		89
9	15	(iso-propenyl)Cu(CN)MgBr	O-TBS N-Boc-Thr- Ψ [(E)CH=CH]Gly-OMe 16		86
10	17	(vinyl) ₂ CuMgCl.MgI(Cl)	Boc-Phe- $\Psi[(E)$ CH=CH]Gly-OMe 19		86
11	17	(vinyl) ₂ Cu(CN)(MgCl) ₂	Boc-Phe- $\Psi[(E)$ CH=CH]Gly-OMe 19		78
12	18	(vinyl) ₂ Cu(CN)(MgCl) ₂	Boc-Phe- $\Psi[(E)$ CH=CH]Gly-OMe 19		73
13	18	(vinyl)2CuMgCl.MgI(Cl)	Boc-Phe- Ψ [(E)CH=CH]Gly-OMe 19		78
14	20	(vinyl) ₂ Cu(CN)(MgCl) ₂	Boc-Phe- $\Psi[(E)$ CH=CH]Gly-OMe 19		97
15	21	(vinyl) ₂ Cu(CN)(MgCl) ₂	Boc-Phe- $\Psi[(E)$ CH=CH]Gly-OMe 19		96

Table 1.Synthesis of Protected $\psi[(E)$ -CH=CH]Gly Isosteres by Reductive Elimination of
 δ -Aminated γ -Mesyloxy or γ -Acetoxy- α,β -unsaturated Esters with Alkenylcopper Reagents a)

a) All reactions were carried out in THF at - 78 °C for 30 min with 3 to 4 molar equivalents of alkenylcopper reagents. Reported yields refer to chromatographically purified and spectroscopically pure compounds.

Of particular interest was comparison of alkyl (sp3)- and alkenyl (sp2)-copper reagents (Scheme 3). Whereas alkyl-Cu(CN)M.BF₃ (alkyl = primary, secondary, and tertiary; M = Li or MgX) readily reacted with the mesylate 20 to yield the alkylated isosteres 22 in high yields via an anti-S_N2' pathway,¹¹⁾ alkenylcoppers such as alkenyl-Cu(CN)MgX (the lower order reagents), (alkenyl)₂Cu(CN)(MgX)₂ (the higher order reagents), and (alkenyl)₂CuMgX (the Gilman type reagents) rapidly reacted with 20 at - 78 °C to afford the reductive elimination product 19 as the sole product in high yield.

In summary, the present methodology for the synthesis of $\psi[(E)CH=CH]Gly$ isosteres using alkenylcopper

reagents has several advantages in terms of (E)-stereoselectivity, efficiency and convenience.

The following procedure is typical for the reductive elimination (Table 1, entry 8). To a stirred suspension of CuCN (90 mg, 1 mmol) in dry THF (4 mL) under argon at -78 °C was added by syringe 0.91 mL (2 mmol) of freshly prepared 2.2 M vinylmagnesium chloride in THF. The mixture was allowed to warm to 0 °C and then stirred at this temperature for 10 min. A solution of mesylate 15 (120 mg, 0.25 mmol) in dry THF (2 mL) was added to the above reagent at -78 °C with stirring. The stirring was continued for 30 min followed by quenching with 3 mL of a 2 : 1 saturated NH₄Cl - 28 % NH₄OH solution. After the usual work-up, the product was purified by flash chromatography over silica gel with *n*-hexane - EtOAc (4 : 1) to give 16 (86 mg, 89 % yield) as a colorless oil of better than 99 % purity (capillary GC and ¹H NMR). Kügelrohr distillation was at 160 °C (1 mm Hg); $[\alpha]^{18}_{D}$ + 7.44° (c 0.941, CHCl₃). The synthesized protected isostere 16 exhibited ¹H NMR (in CDCl₃) and IR (in CHCl₃) consistent with the assigned structure. Anal. C, H, N.

Acknowledgment: A part of this work was supported by the Grant-in-Aid from the Ministry of Education, Science and Culture (Japan).

References

- 1) (a) Spatola, A. In *Chemistry and Biochemistry of Amino Acids, Peptides and Proteins*; Weinstein, B., Ed.; Marcel Dekker: New York, **1983**; Vol. 7, pp. 267-358. (b) According to IUPAC rules, the structure inside the bracket following ψ is the unit substituting for the amide bond. For nomenclature, see: IUPAC-IUB Joint Commission on Biochemical Nomenclature, *Eur. J. Biochem.* **1984**, *138*, 9-37.
- Cox, M. T.; Heaton, D. W.; Horbury, J. J. Chem. Soc., Chem. Commun. 1980, 799-800. Cox, M. T.; Gormley, J. J; Hayward, C. F.; Petter, N. N. J. Chem. Soc., Chem. Commun. 1980, 800-802. Spaltenstein, A.; Carpino, P. A.; Miyake, F.; Hopkins, P. B. J. Org. Chem. 1987, 52, 3759-3766 and references cited. Whitesell, J. K.; Lawrence, R. M. Chirality, 1989, 1, 89-91. de Gaeta, L. S. L.; Czarniecki, M.; Spaltenstein, A. J. Org. Chem. 1989, 54, 4004-4005.
- Hann, M. M.; Sammes, P. G.; Kennewell, P. D.; Taylor, J. B. J. Chem. Soc., Chem. Commun. 1980, 234-235. Hann, M. M.; Sammes, P. G.; Kennewell, P. D.; Taylor, J. B. J. Chem. Soc., Perkin Trans. I, 1982, 307-314.
- For a reduction of γ-bromo-α,β-enoate with zinc in acetic acid, see: Shue, Y.-K.; Carrera, G. M.; Nadzan, A. M. Tetrahedron Lett. 1987, 28, 3225-3228.
- Allemendinger, T.;Furet, P.; Hungerbühler, E. Tetrahedron Lett. 1990, 31, 7297-7300. Allemendinger, T.; Felder, E.; Hungerbühler, E. Tetrahedron Lett. 1990, 31, 7301-7304.
- 6) Thompson, W. J.; Tucker, T. J.; Schwering, J. E.; Barnes, J. L. Tetrahedron Lett. 1990, 31, 6819-6822.
- (a) Ibuka, T.; Nakao, T.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1986, 108, 7420-7422; (b) Ibuka, T.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 4864-4872; (c) Ibuka, T.; Tanaka, M.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1989, 967-969.
- Johnson, R. L. J. Med. Chem. 1984, 27, 1351-1354. Miles, N. J.; Sammes, P. G.; Kennewell, P. D.; Westwood, R. J. Chem. Soc., Perkin Trans. I, 1985, 2299-2305. Kaltenbronn, J. S.; Hudspeth, J. P.; Lunney, E. A.; Michniewicz, B. M.; Nicolaides, E. D.; Repine, J. T.; Roark, W. H.; Stier, M. A.; Tinney, F. J.; Woo, P. K. W.; Essenburg, A. D. J. Med. Chem. 1990, 33, 838-845.
- 9) For syntheses of the substrates 7, 8, 10, 11, 13, 20, and 21, see Ref. 11). Synthetic methods of other requisite substrates 15, 17, and 18 will be presented elsewhere.
- For other reductions with organocopper reagents, see: (a) Ibuka, T.; Chu, G.-N.; Yoneda, F. Tetrahedron Lett. 1984, 25, 3247-3250. (b) Ibuka, T.; Aoyagi, T.; Yoneda, F. J. Chem. Soc., Chem. Commun. 1985, 1452-1454. (c) Takano, S.; Sekiguchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988, 449-450.
- Ibuka, T.; Habashita, H.; Funakoshi, S.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto. Y. Angew. Chem. Int. Ed. Engl. 1990, 29, 801-803. Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. J. Org. Chem. in press.

(Received in Japan 15 April 1991)