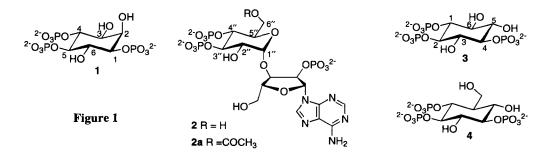
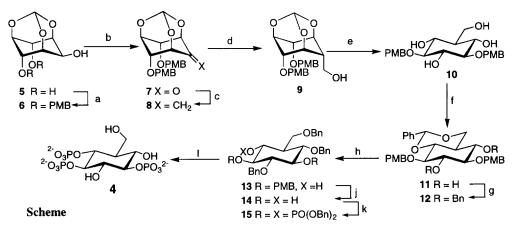


PII: S0960-894X(96)00399-X

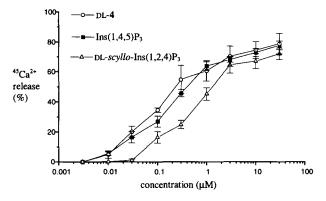

6-DEOXY-6-HYDROXYMETHYL *SCYLLO*-INOSITOL 1,2,4-TRISPHOSPHATE: A POTENT AGONIST AT THE INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR

Andrew M. Riley, Christine T. Murphy, Catherine J. Lindley, John Westwick and Barry V. L. Potter*


School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK Fax: +44 1225 826114. e-mail: B.V.L.Potter@Bath.ac.uk

Abstract: The synthesis of racemic 6-deoxy-6-hydroxymethyl *scyllo*-inositol 1,2,4-trisphosphate is described. This compound is a highly potent agonist at the platelet D-*myo*-inositol 1,4,5-trisphosphate receptor, and it binds to the rat cerebellar receptor with an affinity equal to that of the natural ligand. These results suggest that the 5"-hydroxymethyl group of adenophostin A may contribute to its unusual potency. Copyright © 1996 Elsevier Science Ltd

The binding of many hormones, neurotransmitters and growth factors to their extracellular receptors results in the production of the second messenger D-*myo*-inositol 1,4,5-trisphosphate [Ins(1,4,5)P₃, (1)] *via* activation of phosphoinositidase C. Ins(1,4,5)P₃ interacts with a family of Ins(1,4,5)P₃ -receptor-operated Ca²⁺ channels to mobilise non-mitochondrial intracellular Ca²⁺ stores in a vast array of cell types.¹ Many analogues of Ins(1,4,5)P₃ have been synthesised in recent years, and the various alterations that have been made to the structure of the Ins(1,4,5)P₃ molecule² have often resulted in a reduction in activity. However, the adenophostins A (2) and B (2a), isolated from cultures of *Penicillium brevicompactum*, ³ and radically different from Ins(1,4,5)P₃ in structure, have been reported to possess Ca²⁺-mobilising potencies much higher than Ins(1,4,5)P₃ itself.⁴ We are currently engaged in the synthesis of analogues^{5,6} with the aim of establishing the minimum structural requirements for this activity. In the adenophostins, there is no equivalent to the 2-hydroxyl group of Ins(1,4,5)P₃, with this position being occupied by the pyranoside oxygen, and this is in accordance


with studies that have shown the minimal importance of this feature of $Ins(1,4,5)P_3$ for recognition by its receptor.⁷ Thus, one of the most potent synthetic $Ins(1,4,5)P_3$ receptor agonists to-date is *scyllo*-Ins(1,2,4)P_3 (**3**),^{8,9} which differs from $Ins(1,4,5)P_3$ solely in the orientation of this hydroxyl group, and shows only slightly reduced potency relative to $Ins(1,4,5)P_3$. The effect of placing increasingly bulky groups at the equatorial 3-position of D-*myo*-Ins(1,4,5)P_3, has been investigated by ourselves¹⁰ and others^{11,12} and the results show that affinity for the $Ins(1,4,5)P_3$ receptor dramatically falls off with increasing molecular volume of the substituent. It might therefore seem odd that bulky structures at the 5"-position in the adenophostins, which presumably occupies a similar position at the receptor to the 3-position of $Ins(1,4,5)P_3$, should be compatible with high potency.¹³ We have therefore synthesised **4**, an analogue of *scyllo*-Ins(1,2,4)P_3, which bears an equatorial hydroxymethyl group at this position, analogous to the 5"-hydroxymethyl group of adenophostin A, and compared its biological activity with D-*myo*-Ins(1,4,5)P_3 and DL-*scyllo*-Ins(1,2,4)P_3.

Reagents and conditions: a) NaH (2.1equiv), PMBCI (2.0 equiv), DMF, 40%; b) DMSO, (COCl)₂, CH₂Cl₂, -60°C then Et₃N, 92%; c) CH₃PPh₃Br, *t*-BuOK, THF, reflux, 91% d) i) 9-BBN, THF, 50°C ii) H₂O₂, OH^{*}, 97%; e) 1M HCl / MeOH 1:10, 50°C, 30 min, 87%; f) C₆H₅CH(OMe)₂, DMF, *p*-TsOH, 70°C, -MeOH, 93%; g) NaH, BnBr, DMF, 94%; h) Me₃N•BH₃, AlCl₃, 4Å sieves, THF, 0°C, 23 h, 65%; j) 1M HCl / EtOH 1:2, reflux, 87%; k) i) (BnO)₂PNPrⁱ₂, 1*H*-tetrazole, CH₂Cl₂ ii) *m*-CPBA, -78°C, 85%; l) Na/liq NH₃, -78°C, 71%. PMB = *p*-methoxybenzyl; Bn = benzyl; All asymmetrical compounds are racemic.

The key protected intermediate 12^{14} was synthesised from *myo*-inositol orthoformate 5^{15} as shown in the Scheme. Regioselective reduction of the benzylidene acetal using borane-trimethylamine complex / aluminium chloride¹⁶ gave the alcohol 13 in 65% yield. The *p*-methoxybenzyl groups were removed by acid hydrolysis giving triol 14 (87%). Phosphitylation with bis-(benzyloxy)-*N*,*N*-diisopropylaminophosphine / 1*H*-tetrazole,¹⁷ followed by oxidation of phosphites with *m*-CPBA gave the fully-protected trisphosphate triester 15 (85%). Deprotection with sodium in liquid ammonia¹⁸ gave racemic 4, which was purified by ion-exchange chromatography on Sepharose Q Fast Flow resin, isolated as the pure triethylammonium salt in 71% yield, and quantified by total phosphate assay.

The ability of 4 to release ${}^{45}Ca^{2+}$ from permeabilised rabbit platelets¹⁹ was examined. The results, shown in **Figure 2** demonstrate that 4 is equal in potency to $Ins(1,4,5)P_3$ in this assay, despite being racemic. Furthermore, 4 was significantly more active than racemic *scyllo*-Ins(1,2,4)P₃ in the same assay.

Figure 2 ${}^{45}Ca^{2+}$ release from permeabilised rabbit platelets induced by $Ins(1,4,5)P_3$ (1), DL-*scyllo*-Ins(1,2,4)P_3 (3), and DL-6-deoxy-6-hydroxymethyl-*scyllo*-Ins(1,2,4)P_3 (4). Permeabilised platelets preloaded with ${}^{45}Ca^{2+}$ were treated with $Ins(1,4,5)P_3$ or analogues for 3 minutes at 4°C. Release of ${}^{45}Ca^{2+}$ was terminated by rapid filtration and is given as a percentage of maximal ${}^{45}Ca^{2+}$ releasable upon treatment of platelets with 75μ M ionomycin. The values are the mean ± S.E.M. of six separate experiments, each performed in triplicate.

When 4 was tested for inhibition of specific $[{}^{3}H]Ins(1,4,5)P_{3}$ binding to rat cerebellar membranes,²⁰ the results (see **Table 1**) were in full agreement with the ${}^{45}Ca^{2+}$ release data. Racemic 4 was equipotent to $Ins(1,4,5)P_{3}$, and more potent than racemic *scyllo*-Ins(1,2,4)P_{3}. Presumably, only one enantiomer of 4 is responsible for the observed activity, and this should be one of the most potent synthetic Ins(1,4,5)P_{3} analogues yet identified.

Table 1 Binding and ${}^{45}Ca^{2+}$ release data* for $Ins(1,4,5)P_3$ (1), DL-scyllo-Ins(1,2,4)P_3 (3) and DL-6-deoxy-6-hydroxymethyl-scyllo-Ins(1,2,4)P₃ (4).

Compound	Binding (IC ₅₀ /µM)	$^{45}Ca^{2+}$ release (EC ₅₀ / μ M)
Ins(1,4,5)P ₃	0.04 ± 0.01	0.40 ± 0.11
DL-scyllo-Ins(1,2,4)P ₃	0.15 ± 0.02	1.67 ± 0.35
4	0.027 ± 0.01	0.44 ± 0.26

*Displacement of specific $[{}^{3}H]Ins(1,4,5)P_{3}$ binding from rat cerebellar membranes, and ${}^{45}Ca^{2+}$ release from permeabilised rabbit platelets were used to determine the IC₅₀ and EC₅₀ values respectively. Both studies were performed at 4°C. Each result is given as the mean ± S.E.M. for at least three experiments.

The observation that racemic 4 is equipotent with $Ins(1,4,5)P_3$ implies that the CH₂OH component, which is not present in $Ins(1,4,5)P_3$ itself, is tolerated by the $Ins(1,4,5)P_3$ receptor despite the additional steric bulk. The presence of an analogous structure in adenophostin A is in accordance with this finding. The results also suggest that, at least in *scyllo*-analogues of $Ins(1,4,5)P_3$, replacement of the secondary hydroxyl group at this position

with an hydroxymethyl group *enhances* potency at the $Ins(1,4,5)P_3$ receptor. This motif could therefore be of great interest in the design of $Ins(1,4,5)P_3$ receptor ligands. The interaction of 4 with a purified $Ins(1,4,5)P_3$ 3-kinase preparation is currently under examination, and the enantiomers of 4 are being synthesised *via* the optical resolution of intermediate 13.

ACKNOWLEDGEMENTS:

We thank the Wellcome trust for Programme Grant Support, and the British Heart Foundation.

BVLP is a Lister Institute Research Professor.

References and Notes

- 1. Berridge, M.J. Nature 1993, 361, 315.
- 2. Reviewed in: Potter, B.V.L.; Lampe, D. Angew. Chem. Int. Ed. Engl. 1995, 34, 1933.
- 3. Takahashi, M.; Kagasaki, T.; Hosoya, T.; Takahashi, S. J. Antibiotics 1993, 46, 1643.
- 4. While the adenophostins were originally reported to be 100-fold more potent than Ins(1,4,5)P₃ in Ca²⁺ release from rat cerebellar microsomes (Takahashi, M.; Tanzawa, K.; Takahashi, S. J. Biol. Chem. 1994, 269, 369), a later study using adenophostin B found only a 10-fold higher potency than Ins(1,4,5)P₃ at purified type 1 Ins(1,4,5)P₃ receptors (Hirota J.; Michikawa, T.; Miyawaki, A.; Takahashi, M.; Tanzawa, K.; Okura, I.; Furuichi, T.; Mikoshiba, K. FEBS Lett. 1995, 368, 248). Our preliminary results show adenophostin A to be around 50-fold more potent than Ins(1,4,5)P₃ in ⁴⁵Ca²⁺ release from permeabilised rabbit platelets, under identical conditions to those described in the text.
- 5. Jenkins, D.J.; Potter, B.V.L. J. Chem. Soc. Chem. Commun. 1995, 1169.
- 6. Jenkins, D.J.; Potter, B.V.L. Carbohydr. Res. 1996, 287, 169.
- 7. Wilcox, R.A.; Safrany, S.T.; Lampe, D.; Mills, S.J.; Nahorski, S.R.; Potter, B.V.L. Eur. J. Biochem. 1994, 223,115.
- 8. Lampe, D.; Potter, B.V.L. Tetrahedron Lett. 1993, 34, 2365.
- 9. Lampe, D.; Liu, C.; Mahon, M.F.; Potter, B.V.L. J. Chem. Soc. Perkin Trans. 1 1996, 1717.
- 10. Liu, C.; Potter, B.V.L. Tetrahedron Lett. 1994, 35, 8457.
- 11. Wilcox, R.A.; Challiss, R.A.J.; Traynor, J.R.; Fauq, A.H.; Ognyanov, V.I.; Kozikowski, A.P.; Nahorski, S.R. J. Biol. Chem. 1994, 269, 26815.
- 12. Hirata, M.; Watanabe, Y.; Kanematsu, T.; Ozaki, S.; Koga, T. Biochim. Biophys. Acta 1995, 1244, 404.
- 13. Wilcox, R.A.; Erneux, C.; Primrose, W.U.; Gigg, R.; Nahorski, S.R. Mol. Pharmacol. 1995, 47, 1204.
- 14. Riley, A.M.; Potter, B.V.L. J. Org. Chem. 1995, 60, 4970.
- 15. Lee, H.W.; Kishi, Y. J. Org. Chem. 1985, 50, 4402.
- 16. Classon, B.; Garegg, P.J.; Helland, A.-C. J. Carbohydr. Chem. 1989, 8, 543.
- 17. Yu, K.-L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979.
- 18. Lampe, D.; Liu, C.; Potter, B.V.L. J. Med. Chem. 1994, 37, 907.
- 19. Mills, S.J.; Al-Hafidh, J.; Westwick, J.; Potter, B.V.L. Biorg. Med. Chem. Lett. 1993, 3, 2599.
- 20. Challiss, R.A.J.; Chilvers, E.R.; Willcocks, A.L.; Nahorski, S.R. Biochem. J. 1990, 265, 421.

(Received in Belgium 28 May 1996; accepted 20 August 1996)