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Summary: A general approach is described for the total
synthesis of enantiomerically pure 3-a-heteroyohimbine
alkaloids based on the utilization of D-glucose as a chiral
template for ring E. 19-Epiajmalicine was thus prepared
from a-D-glucose pentaacetate in 23 steps (2.5% overall
yield), averaging 85% yield per step.

The indole alkaloids! have attracted much interest over
the years due to their important pharmacological prop-
erties.? Ajmalicine (raubasine)® (1) and 19-epiajmalicine
(mayumbine)* (2) are the better known members of a
general family of the heteroyohimbine alkaloids that also
includes tetrahydroalstonine (3) and rauniticine (4).
Ajmalicine is a potent peripheral and central vasodilating
agent® with a clinically demonstrated effect in reducing
platelet aggregation.® The pentacyclic structures of this
facinating family of alkaloids” harbor indole, piperidine,
and dihydropyran-type subunits, fused together through
a set of contiguous and alternating stereogenic centers
(Figure 1).
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Since the original synthesis of dl-ajmalicine by van
Tamelen and co-workers,? a number of elegant studies by
Wenkert, Uskokovic, Takano, Martin, and others have led
to the total synthesis of dl-ajmalicine,? di-tetrahydro-
alstonine,>!! their enantiomerically pure natural iso-
mers,'2"!4 and (+)-19-epiajmalicine.!’® The synthesis of
advanced intermediates!® and semisynthesis from related
alkaloids!” have also been reported. In spite of this, efforts
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Figure 1.

to develop a general synthetic strategy that can lead to any
one of the four isomeric 3-a-heteroyohimbines (Figure 1)
through a common intermediate have been limited.!®
We describe in this paper a general approach to this
family of alkaloids as exemplified by the total synthesis
of (-)-ajmalicine and (+)-19-epiajmalicine. The obvious
skeletal overlap of the dihydropyran ring in all these al-
kaloids with a hexose-like structure instigated the search
for an efficient and stereocontrolled C-functionalization
at C-3/C-4 in D-glucose!? with the aim of generating a
common intermediate. Such a chiron could be further
elaborated upon by functional and stereochemical ad-
justments en route to the respective targets.
Intermediate 5 (Scheme I), was readily prepared from
D-glucose pentaacetate in six steps and in 30% overall yield
by a series of sequential transformations previously re-
ported from our laborabory.? With three contiguous
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stereogenic centers easily generated, we proceeded to test
the feasibility of functionalizing the keto group in order
to introduce the methoxycarbonyl group early in the
synthesis. Such a structure would nearly converge with
that of elenolic acid,#162! g known synthetic precursor of
ajmalicine. Unfortunately, all attempts in this direction
using phosphorus or sulfur ylids were unsuccessful, and
we opted for a reductive deoxygenation of the keto group
via the tosylhydrazone,?? which afforded 6 after deacety-
lation (68%, four steps), [a]®p +142° (¢ 1.10, CHCl,).
Treatment of 6 with PhyP zJ CCl, gave the correspondmg
chloride, mp 30-31 °C, [a]® +130° (¢ 1.55, CHCl,), which
when subjected to a radlcal mediated dehalogenatxon23
gave the corresponding deoxy derivative in 94% yield,
[a]®p +152.3° (¢ 1.42, CHCl;). At this juncture, our plan
for synthesis in the heteroyohimbine series with a trans
junction of rings D/E such as in ajmalicine (1) and the
19-epi isomer 2 called for an oxidative cleavage of the vinyl
group and epimerization of the resulting aldehyde. Ozo-
nolysis of the deoxy derivative gave the aldehyde 7, [«]%p
+136° (¢ 1.26, MeOH), which when treated with DBU
underwent smooth epimerization to aldehyde 8 (59%, two
steps), mp 58-62 °C, [«]®p +97.1° (¢ 0,66, CHCly), con-
taining a minor quantity of 7.

Coupling of 8 with tryptamine under conditions used
for reductive amination?® led in excellent yield to 9, mp
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188-9 °C, [a)®p +135.6° (¢ 0.84, CHCl,), which was N-
protected as the Boc derivative, []®p +104.2° (¢ 1.43,
CHCly). At this stage, minor quantities of the cis-fused
isomer derived from 7 could be easily separated by column
chromatography. Acid hydrolysis of the glycosidic linkage
followed by oxidation with PCC gave the lactone 10 (72%,
two steps), [«]®p +63° (¢ 1.12, CHCl;). We were now
ready to effect the crucial Bischler-Napieralski reaction,
which would give us the desired pentacyclic skeleton and
the last stereogenic center at C-3 after catalytic reduction.
The two-step sequence proceeded in excellent yield to give
the desired product 11 (77% overall), mp 165-170 °C dec,
[@]?®p -144.5° (¢ 1.21, CHCly).%8

Having assembled the immediate precursor to 19-epia-
jamalicine, we were faced with a number of choices for the
methoxycarbonylation and functional adjustment of the
lactone carbonyl group. Previously, van Tamelen and
co-workers® had achieved this transformation via acylation
of the lactone with methyl formate followed by an acid-
catalyzed acyl-lactone rearrangement. More recently
Uskokovic and co-workers!? have used the Bredereck
reagent in a bicyclic model lactone to obtain the «-(di-
methylamino)methylidene derivative, which was then
subjected to strong acid conditions in order to mediate the
rearrangement. Although a-branching was successfully
achieved in 11 under the same conditions, the subsequent
acyl-lactone rearrangement failed and we resorted to an
alterative approach. Thus, treatment of the 11 with LDA
and Mander’s reagent (CNCO;Me)% as described by Le-
onard for a model lactone!®® effected smooth methoxy-
carbonylation to give 12 as a single isomer, [a]% —-62.9°
(c 0.7, CHCly). Treatment with DiBALH, followed by
acid-catalyzed dehydration of the resulting lactol, gave
crystalline 19-epiajmalicine (2), mp 205-206 °C dec, [«]%p
+58.8° (¢ 0.17, CHCl,); hydrochloride, mp 255260 °C dec,
[a]®p +84.5° (¢ 0.5, MeOH), identical in all respects with
published data!®1"d ({H NMR, 3C NMR, high-resolution
mass, microanalysis).

(24) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc.
1971, 93, 2897. Borch, R. F. Org. Syn. 1972, 54, 124. Lane, C. F. Syn-
thesis 1975, 135.

(25) A portion of the product in which the N-Boc group was partially
hydrolyzed during the reaction was transformed into 11 by treatment
with Boc anhydride in CH,Cl,/DMAP.

(26) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1983, 24, 3425.
Aldrichimica Acta 1987, 20, 53.

Ajmalicine (1) was obtained from 10 via a ring-opening
and inversion sequence through the intermediacy of the
hydroxy acid. Thus, hydrolysis of 10 with barium hy-
droxide and careful acidification followed by intramolec-
ular inversion of the resulting 8-hydroxy acid under Mit-
sunobu reaction conditions?2 gave the C-19 inverted
lactone 13 [a])®p +12.3° (¢ 0.47, CHCly) and 10 (4:1).
Application of the same sequence of reactions to 13 as for
10 gave the C-19 epimeric lactone corresponding to 13,
[@]®p -130.4° (¢ 0.78, CHCl;). Methoxycarbonylation with
Mander’s reagent followed by reduction with DIBALH
gave N-Boc-ajmalicinine 14% as a 13:1 mixture of anomers.
Dehydration of 14 led to ajmalicine isolated as the hy-
drochloride (21% overall from 10), mp and mixed mp
270-275 °C dec, [a]?p -12° (¢ 0.05, MeOH) (lit.3! [«])%
-12.9° (¢ 0.24, MeOH).

We have described a strategy for the total synthesis of
(-)-ajmalicine (1), (+)-19-epiajmalicine (2), and N-Boc-
ajmalicinine (14) from a common progenitor. The general
approach can be easily extended to tetrahydroalstonine
(3) and rauniticine (4) as well as other 3-a-heteroyohi-
mibines starting with the readily available chiron 7.323
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Summary: Reactions of deuteriocatecholborane (C¢H,-
0,BD) with alkenes in the presence of rhodium(+1) com-
plexes have been reinvestigated. Distributions of label in
the products differ significantly from those reported pre-
viously, and alternative rationales for these observations
are provided.

Deuterium-labeling studies were recently reported! to
elucidate the mechanism of rhodium-catalyzed hydro-
borations (Scheme I). Our interest was aroused because

(1) Evans, D. A.; Fu, G. C. J. Org. Chem. 1990, 55, 2280.

the authors implied their results, particularly those de-
picted in eq 1, cast doubt upon a postulate one of us had
used to explain substrate-controlled diastereoselectivities
in catalyzed hydroborations of chiral, 1,1-disubstituted,
acyclic alkenes.?®

To explain the observed distribution of deuterium in the
alcohol 2, the authors proposed,! “The incorporation of
deuterium a to the hydroxyl group of the product alcohol
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