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Summary: A general approach is described for the total 
synthesis of enantiomerically pure 3-a-heteroyohimbine 
alkaloids based on the utilization of D-glucose as a chiral 
template for ring E. 19-Epiajmalicine was thus prepared 
from a-D-glUCOSe pentaacetate in 23 steps (2.5% overall 
yield), averaging 85% yield per step. 

The indole alkaloids' have attracted much interest over 
the years due to their important pharmacological prop- 
erties.2 Ajmalicine (ra~basine)~ (1) and 19-epiajmalicine 
(mayumbine)' (2) are the better known members of a 
general family of the heteroyohimbine alkaloids that also 
includes tetrahydroalstonine (3) and rauniticine (4). 
Ajmalicine is a potent peripheral and central vasodilating 
agent6 with a clinically demonstrated effect in reducing 
platelet aggregation6 The pentacyclic structures of this 
facinating family of alkaloids' harbor indole, piperidine, 
and dihydroppan-type subunits, fused together through 
a set of contiguous and alternating stereogenic centers 
(Figure 1). 
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Since the original synthesis of dl-ajmalicine by van 
Tamelen and co-workers,8 a number of elegant studies by 
Wenkert, Uskokovic, Takano, Martin, and others have led 
to the total synthesis of dl-ajmalicine: dl-tetrahydro- 
alstonine,"' their enantiomerically pure natural iso- 
m e r ~ , ~ ~ - ~ ~  and (+)-19-epiajmalicine.16 The synthesis of 
advanced intermediates16 and semisynthesis from related 

have also been reported. In spite of this, efforts 
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Figure 1. 

to develop a general synthetic strategy that can lead to any 
one of the four isomeric 3-a-heteroyohimbines (Figure 1) 
through a common intermediate have been limited.'* 

We describe in this paper a general approach to this 
family of alkaloids as exemplified by the total synthesis 
of (-)-ajmalicine and (+)-lg-epiajmalicine. The obvious 
skeletal overlap of the dihydropyran ring in all these al- 
kaloids with a hexose-like structure instigated the search 
for an efficient and stereocontrolled C-functionalization 
a t  C-3/C-4 in ~-glucose'~ with the aim of generating a 
common intermediate. Such a chiron could be further 
elaborated upon by functional and stereochemical ad- 
justments en route to the respective targets. 

Intermediate 5 (Scheme I), was readily prepared from 
Dglucose pentaacetate in six steps and in 30% overall yield 
by a series of sequential transformations previously re- 
ported from our laborabory.m With three contiguous 
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stereogenic centers easily generated, we proceeded to test 
the feasibility of functionalizing the keto group in order 
to introduce the methoxycarbonyl group early in the 
synthesis. Such a structure would nearly converge with 
that of elenolic acid,14J6*21 a known synthetic precursor of 
ajmalicine. Unfortunately, all attempts in this direction 
using phosphorus or sulfur ylids were unsuccessful, and 
we opted for a reductive deoxygenation of the keto group 
via the tosylhydrazone,22 which afforded 6 after deacety- 
lation (68%, four steps), [ a ] " D  +142O (c 1.10, CHCl3). 
Treatment of 6 with Ph3P CC14 gave the corresponding 

when subjected to a radical-mediated dehalogenationZ3 
gave the corresponding deoxy derivative in 94% yield, 
[ a ] = D  f152.3' (c 1.42, CHC13). At  this juncture, our plan 
for synthesis in the heteroyohimbine series with a trans 
junction of rings D/E such as in ajmalicine (1) and the 
19-epi isomer 2 called for an oxidative cleavage of the vinyl 
group and epimerization of the resulting aldehyde. Ozo- 
nolysis of the deoxy derivative gave the aldehyde 7 ,  [ a ] % ~  
+136O ( c  1.26, MeOH), which when treated with DBU, 
underwent smooth epimerization to aldehyde 8 (59%, two 
steps), mp 58-62 OC, [ a ] 2 6 D  +97.1° (c 0,66, CHC13), con- 
taining a minor quantity of 7. 

Coupling of 8 with tryptamine under conditions used 
for reductive amination2' led in excellent yield to 9, mp 

chloride, mp 30-31 OC, [a] 2/ D +130° (C 1.55, CHClJ, which 
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188-9 "C, [a]25,-, +135.6' (c 0.84, CHCl,), which was N- 
protected as the Boc derivative, [ala6~ +104.2' (c  1.43, 
CHCl,). A t  this stage, minor quantities of the cis-fused 
isomer derived from 7 could be easily separated by column 
chromatography. Acid hydrolysis of the glycosidic linkage 
followed by oxidation with PCC gave the lactone 10 (72%, 
two steps), [aI2'D +63' (c  1.12, CHCl,). We were now 
ready to effect the crucial Bischler-Napieralski reaction, 
which would give us the desired pentacyclic skeleton and 
the last stereogenic center at  C-3 after catalytic reduction. 
The two-step sequence proceeded in excellent yield to give 
the desired product 11 (77% overall), mp 165-170 'C dec, 

Having assembled the immediate precursor to 19-epia- 
jamalicine, we were faced with a number of choices for the 
methoxycarbonylation and functional adjustment of the 
lactone carbonyl group. Previously, van Tamelen and 
co-worker@ had achieved this transformation via acylation 
of the lactone with methyl formate followed by an acid- 
catalyzed acyl-lactone rearrangement. More recently 
Uskokovic and co-workers12 have used the Bredereck 
reagent in a bicyclic model lactone to obtain the a-(di- 
methy1amino)methylidene derivative, which was then 
subjected to strong acid conditions in order to mediate the 
rearrangement. Although a-branching was successfully 
achieved in 11 under the same conditions, the subsequent 
acyl-lactone rearrangement failed and we resorted to an 
alterative approach. Thus, treatment of the 11 with LDA 
and Mander's reagent (CNC02Me)26 as described by Le- 
onard for a model lactonelsb effected smooth methoxy- 
carbonylation to give 12 as a single isomer, [a]=D -62.9' 
(c 0.7, CHC13). Treatment with DiBALH, followed by 
acid-catalyzed dehydration of the resulting lactol, gave 
crystalline 19-epiajmalicine (2), mp 205-206 'C dec, [aI2"D 
+58.8' (c 0.17, CHC1,); hydrochloride, mp 255-260 'C dec, 
  CY]^^ +84.5' (c  0.5, MeOH), identical in all respects with 
published data16J7d ('H NMR, 13C NMR, high-resolution 
mass, microanalysis). 

[aI2'~ -144.5' (C 1.21, CHC13).2S 
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Ajmalicine (1) was obtained from 10 via a ring-opening 
and inversion sequence through the intermediacy of the 
hydroxy acid. Thus, hydrolysis of 10 with barium hy- 
droxide and careful acidification followed by intramolec- 
ular inversion of the resulting &hydroxy acid under Mit- 
sunobu reaction gave the C-19 inverted 
lactone 13 [aI2'D +12.3' (c  0.47, CHC13) and 10 (41). 
Application of the same sequence of reactions to 13 as for 
10 gave the (2-19 epimeric lactone corresponding to 13, 
[(Yl2"D -130.4' (c 0.78, CHClJ. Methoxycarbonylation with 
Mander's reagent followed by reduction with DiBALH 
gave N-Boc-ajmalicinine 1490 as a 131 mixture of anomers. 
Dehydration of 14 led to ajmalicine isolated as the hy- 
drochloride (21% overall from lo), mp and mixed mp 

-12.9' (c 0.24, MeOH). 
We have described a strategy for the total synthesis of 

(-)-ajmalicine (I), (+)-lg-epiajmalicine (2), and N-Boc- 
ajmalicinine (14) from a common progenitor. The general 
approach can be easily extended to tetrahydroalstonine 
(3) and rauniticine (4) as well as other 3-a-heteroyohi- 
mibines starting with the readily available chiron 7.,%,* 
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Summary: Reactions of deuteriocatecholborane (C6H4- 
02BD) with alkenes in the presence of rhodium(+l) com- 
plexes have been reinvestigated. Distributions of label in 
the products differ significantly from those reported pre- 
viously, and alternative rationales for these observations 
are provided. 

Deuterium-labeling studies were recently reported' to 
elucidate the mechanism of rhodium-catalyzed hydro- 
borations (Scheme I). Our interest was aroused because 

(1) Evans, D. A.; Fu, G. C. J.  Org. Chem. 1990,56,2280. 
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the authors implied their results, particularly those de- 
picted in eq l, cast doubt upon a postulate one of us had 
used to explain substrate-controlled diastereoselectivities 
in catalyzed hydroborations of chiral, 1,l-disubstituted, 
acyclic  alkene^.^*^ 

To explain the observed distribution of deuterium in the 
alcohol 2, the authors proposed,' "The incorporation of 
deuterium a to the hydroxyl group of the product alcohol 
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