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Summary: Reaction of (PNPCy)ReOCl2 (PNPCy ) N(SiMe2-
CH2PCy2)2) with Mg and H2 yields (PNPCy)Re(H)4, whose
unsaturation is demonstrated by its ability to add H2.
“(PNPCy)ReH6” is an equilibrium mixture of a structure
where all six H’s are on Re and a structure where five
H’s are on Re and one H is on N. (PNPCy)Re(H)4 reacts
with C2H4 within 10 min at 25 °C to give ethane and
(PNPCy)ReH(tC-CH3), together with its ethylene ad-
duct.

Whereas “pure” polyhydride compounds, LnMHm (L
) Lewis base), are almost invariably saturated and
resist becoming unsaturated, the presence of at least
one π-donor ligand, LnMHm-3X, even one as weak as
chloride, makes such unsaturated species achievable.
This is illustrated by (R3P)2MH5 versus (R3P)2MH2Cl
(M ) Rh, Ir), and (R3P)2M′H6 versus (R3P)2M′H3Cl (M′
) Ru, Os).1,2 We desired to extend this class of com-
pounds to include X ) NR2 and to do this via the class
of ligands developed by Fryzuk: (R2PCH2SiMe2)2N-

(“PNPR”).3 We were especially interested in enhancing

the π-basicity of the metal to accomplish the isomer-
ization of olefins lacking any π-donor substituents into
coordinated carbenes, which was not possible for the
fragment (R3P)2RuHCl.4 We envisioned doing this by
moving from Ru(II) to Re(I),5 and from Cl to the more
π-donating NR2.

Mg powder under H2 (1 atm, 25 °C, Et2O) functions
well to remove oxide and chloride from (PNPCy)ReOCl2
(1)6 to give red-purple (PNPCy)ReH4 (2) in good yield
upon workup (Scheme 1).7 The hydrides give only one
1H NMR triplet at -9.24 ppm (JPH ) 22 Hz) in the -80
to +22 °C temperature range, but a crystal structure
determination (Figure 1a)8 was sufficient to reveal four
hydride ligands in an unusual seven-coordinate geom-
etry. The peculiarity of this approximately C2v sym-
metric structure results from the fact that Ha1 and Ha2
are bent away from being mutually trans in order to
avoid competition of two strong trans-effect ligands and
to rehybridize one empty dπ orbital for more effective π
bonding with the filled pπ orbital of the amide nitrogen.2b,9

DFT calculations (see Supporting Information) on a
model species, (H2PCH2SiH2)2NReH4 (2H), give a tet-
rahydride ground state structure with the relevant
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geometrical parameters closely corresponding to those
of 2. No dihydrogen isomer was found as an energy
minimum.

(PNPCy)ReH4 is an operationally unsaturated complex
and does indeed bind H2 (Scheme 1) to produce a
mixture of two tautomers: (PNPCy)ReH6 (3) and (PN-
HPCy)ReH5 (4). Under an H2 atmosphere, the hydride
signal of 4 (t, JHP ) 17 Hz) can be observed at ambient
temperature by 1H NMR at -6.82 ppm. The peaks
corresponding to 2 and 3 are coalesced at ambient
temperature and give rise to a very broad upfield
hydride resonance and one very broad 31P NMR reso-
nance. At -40 °C and below, the resonances of 2 and 3
decoalesce to give two broad triplets for their corre-
sponding hydrides and two singlets for their corre-
sponding Si-Me groups in 1H NMR, as well as two
singlets in the 31P{1H} NMR.

We undertook a DFT computational study of the Re
polyhydrides 2H-5H (Scheme 2). Tautomerization of 2H

to 5H is found to be highly unfavorable, whereas the
tautomers 3H and 4H are approximately isoenergetic.
Both 3H and 4H are saturated 18e complexes, while 2H

and 5H are unsaturated 16e complexes. However, the
Re center in 2H is stabilized by π-donation from N; no
such option exists for 5H. The much shorter Re-N bond
in 2H (2.062 Å) than in 3H (2.209 Å) is consistent with
a multiple Re-N bond in 2H. In contrast, the lengths of

the dative RerN bonds in 4H (2.362 Å) and 5H (2.357
Å) are very similar. The addition of H2 to the unam-
biguously unsaturated 5H is favorable by 25.3 kcal/mol,
while the addition of H2 to the operationally unsaturated
2H is favorable only by 2.5 kcal/mol.

Our computational results are consistent with the
experimental observation of species 2-4 and not of 5
and with the observation that H2 addition to 2 is
reversible and that even in the presence of excess H2
and at -80 °C the conversion of (PNPCy)ReH4 to
“(PNPCy)ReH6” isomers is incomplete.10 (PNPCy)ReH4 (2)
also slowly exchanges its hydrides and the hydrogens
of the cyclohexyl rings with D from C6D6 at 25 °C.11

The unsaturated character of (PNPCy)ReH4 allows it
to react with ethylene rapidly (10 min) at 25 °C to
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time the color changed from green to red-purple, then the volatiles
were removed in vacuo. The residue was triturated with heptane,
extracted with pentane, and filtered. The volume of the filtrate was
reduced to ca. 5 mL in vacuo, and this solution was kept at -30 °C for
24 h. Red-purple crystalline product was separated by decantation and
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Figure 1. Selected bond distances (Å) and angles (deg).
(a) Molecular structure of 2: Re(1)-P(1), 2.3877(6); Re-
(1)-P(2), 2.3860(6); Re(1)-N(1), 2.0633(19); N(1)-Re(1)-
H(a1), 119.4(11); N(1)-Re(1)-H(a2), 116.8(11); H(a1)-
Re(1)-H(a2), 123.7(16). (b) Molecular structure of 6: Re(1)-
P(1),2.4412(5);Re(1)-P(2),2.4292(5);Re(1)-N(1),2.2768(17);
Re(1)-C(31), 2.232(2); Re(1)-C(32), 2.242(2); Re(1)-C(33),
1.762(2);C(31)-C(32),1.422(3);P(1)-Re(1)-P(2),157.482(18);
N(1)-Re(1)-C(33),173.82(8);Re(1)-C(33)-C(34),174.03(19).
[Hydrogen atoms, except Re-H, and all cyclohexyl CH2
were omitted for clarity.]

Scheme 1

Scheme 2
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fragment C2H4 into hydride and carbyne ligands (Scheme
1). In this reaction, the four original hydride ligands are
“abstracted” by two molecules of ethylene, effectively a
four-electron reduction of Re, which enables reconstruc-
tion (and reduction) of ethylene into a hydride and a
strongly π-acidic ethylidyne ligand. The ethylidyne
moiety is characterized by the downfield 13C NMR
resonance of the R-carbon (6, 259.5 ppm; 7, 271.0 ppm).12

While ethylene does bind to the hydridocarbyne, its
enthalpy of binding is modest (like that of H2 binding
to (PNPCy)ReH4) to the point that it can be removed
from the colorless 6 in a vacuum, albeit under drastic
conditions (0.1 Torr, >100 °C),13 to give isolable, opera-
tionally unsaturated, deep red (PNPCy)ReH(CCH3) (7).
Ethylene in 6 does not undergo free rotation at ambient
temperature on the NMR time scale, as evidenced by
the observation of two different 1H NMR resonances for
the two diastereotopic pairs of H’s in the C2H4 unit and
a single 13C NMR signal. Solution NMR evidence is thus
consistent with the alignment of the CdC bond along
the P-Re-P vector, as found in the solid state (Figure
1b).

These results show that an amide supporting ligand,
even one with two (electron-withdrawing) silyl substit-
uents, has sufficient π-donor ability to make thermo-
dynamically accessible either unsaturated polyhydride
or carbyne complexes. The mechanism of conversion of
ethylene to hydride14 and ethylidyne may involve either
vinyl C-H oxidative addition or hydrogenation to a
ReCH2CH3 intermediate. Because the product is not
RedCHCH3, but instead a hydride carbyne, this is
similar to an osmium analogue (B preferred over A),
while the latter (an unsaturated carbene complex) is
preferred for the 4d analogue Ru.4,12,15

This work shows that the (PNP)Re substructure has
the versatility to (a) permit ready ligand (e.g., H2 or
olefin) loss and thus access unsaturated rhenium and
still retain (b) an ability of Re to bind a new substrate
and (c) effect olefin hydrogenation and C/H bond cleav-
age. These capabilities can be attributed to an amide
nitrogen which can either donate or retain a lone
electron pair and to a metal that has the ability to span
a large range of oxidation states, including +5, and still
have sufficient π-basicity to bind an olefin at the d2

configuration in 2 and 6.
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