

Volume 22, Number 13, June 23, 2003

© Copyright 2003 American Chemical Society

Communications

Conversion of Ethylene to Hydride and Ethylidyne by an **Amido Rhenium Polyhydride**

Oleg V. Ozerov, John C. Huffman, Lori A. Watson, and Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102

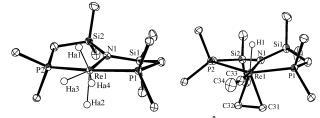
Received December 27, 2002

Summary: Reaction of $(PNP^{Cy})ReOCl_2$ $(PNP^{Cy} = N(SiMe_2)$ $CH_2PCy_2)_2$ with Mg and H_2 yields (PNP^{Cy})Re(H)₄, whose unsaturation is demonstrated by its ability to add H_2 . "(PNP^{Cy})ReH₆" is an equilibrium mixture of a structure where all six H's are on Re and a structure where five *H's are on Re and one H is on N.* $(PNP^{Cy})Re(H)_4$ reacts with C_2H_4 within 10 min at 25 °C to give ethane and $(PNP^{Cy})ReH = C - CH_3)$, together with its ethylene adduct.

Whereas "pure" polyhydride compounds, L_nMH_m (L = Lewis base), are almost invariably saturated and resist becoming unsaturated, the presence of at least one π -donor ligand, L_nMH_{m-3}X, even one as weak as chloride, makes such unsaturated species achievable. This is illustrated by (R₃P)₂MH₅ versus (R₃P)₂MH₂Cl (M = Rh, Ir), and $(R_3P)_2M'H_6$ versus $(R_3P)_2M'H_3Cl$ (M')= Ru, Os).^{1,2} We desired to extend this class of compounds to include $X = NR_2$ and to do this via the class of ligands developed by Fryzuk: (R₂PCH₂SiMe₂)₂N⁻ ("PNP^R").³ We were especially interested in enhancing the π -basicity of the metal to accomplish the isomerization of olefins lacking any π -donor substituents into coordinated carbenes, which was not possible for the fragment (R₃P)₂RuHCl.⁴ We envisioned doing this by moving from Ru(II) to Re(I),⁵ and from Cl to the more π -donating NR₂.

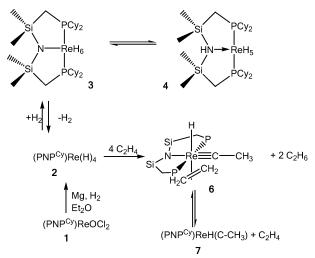
Mg powder under H₂ (1 atm, 25 °C, Et₂O) functions well to remove oxide and chloride from (PNPCy)ReOCl₂ (1)⁶ to give red-purple (PNP^{Cy})ReH₄ (2) in good yield upon workup (Scheme 1).⁷ The hydrides give only one ¹H NMR triplet at -9.24 ppm ($J_{PH} = 22$ Hz) in the -80to +22 °C temperature range, but a crystal structure determination (Figure 1a)⁸ was sufficient to reveal four hydride ligands in an unusual seven-coordinate geometry. The peculiarity of this approximately C_{2v} symmetric structure results from the fact that Ha1 and Ha2 are bent away from being mutually trans in order to avoid competition of two strong trans-effect ligands and to rehybridize one empty d_{π} orbital for more effective π bonding with the filled p_{π} orbital of the amide nitrogen.^{2b,9} DFT calculations (see Supporting Information) on a model species, (H₂PCH₂SiH₂)₂NReH₄ (2^H), give a tetrahydride ground state structure with the relevant

^{*} Corresponding author. E-mail: caulton@indiana.edu. (1) (a) Mediati, M.; Tachibana, G. N.; Jensen, C. M. *Inorg. Chem.*


 ⁽a) Mediati, M.; Tachibana, G. N.; Jensen, C. M. Inorg. Chem.
1990, 29, 3. (b) Mediati, M.; Tachibana, G. N.; Jensen, C. M. Inorg. Chem. 1992, 31, 1827. (c) Le-Husebo, T.; Jensen, C. M. Inorg. Chem.
1993, 32, 3797. (d) Brinkmann, S.; Morris, R. H.; Ramachandran, R.; Park, S.-H. Inorg. Synth. 1998, 32, 303.
(2) (a) Gusev, D. G.; Kuznetsov, V. F.; Eremenko, I. L.; Berke, H. J. Am. Chem. Soc. 1993, 115, 5831. (b) Gusev, D. G.; Kuhlman, R.; Sin, G.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116, 2685.
(c) Chaudret, B.; Chung, G.; Eisenstein, O.; Jackson, S. A.; Lahoz, F. J.; Lopez, J. A. J. Am. Chem. Soc. 1991, 113, 2314.
(3) (a) Fryzuk, M. D.; Carter, A.; Westerhaus, A. Inorg. Chem. 1985, 24, 642. (b) Fryzuk, M. D.; Cant. J. Chem. 1992, 70, 2839.

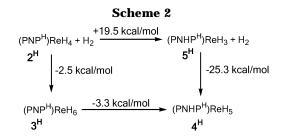
^{95, 1. (}c) Fryzuk, M. D. Can. J. Chem. 1992, 70, 2839.

⁽⁴⁾ Coalter, J. N.; Bollinger, J. C.; Huffman, J. C.; Werner-Zwan-ziger, U.; Caulton, K. G.; Davidson, E. R.; Gerard, H.; Clot, E.; Eisenstein, O. *New J. Chem.* **2000**, *24*, 9. (b) Ferrando, G.; Gerard, H.; Spivak, G. J.; Coalter, J. N.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. *Inorg. Chem.* **2001**, *40*, 6610. (5) This approach was recently taken by Harmon: Mainer S. H.


⁽⁵⁾ This approach was recently taken by Harman: Meiere, S. H.; Brooks, B. C.; Gunnoe, T. B.; Carrig, E. H.; Sabat, M.; Harman, W. D. Organometallics **2001**, *20*, 3661.

⁽⁶⁾ Ozerov, O. V.; Gerard, H. F.; Watson, L. A.; Huffman, J. C.; Caulton, K. G. *Inorg. Chem.* **2002**, *41*, 5615.

Figure 1. Selected bond distances (Å) and angles (deg). (a) Molecular structure of **2**: Re(1)-P(1), 2.3877(6); Re-(1)-P(2), 2.3860(6); Re(1)-N(1), 2.0633(19); N(1)-Re(1)-H(a1), 119.4(11); N(1)-Re(1)-H(a2), 116.8(11); H(a1)-Re(1)-H(a2), 123.7(16). (b) Molecular structure of **6**: Re(1)-P(1), 2.4412(5); Re(1)-P(2), 2.4292(5); Re(1)-N(1), 2.2768(17); Re(1)-C(31), 2.232(2); Re(1)-C(32), 2.242(2); Re(1)-C(33), 1.762(2); C(31)-C(32), 1.422(3); P(1)-Re(1)-P(2), 157.482(18); N(1)-Re(1)-C(33), 173.82(8); Re(1)-C(33)-C(34), 174.03(19). [Hydrogen atoms, except Re-H, and all cyclohexyl CH₂ were omitted for clarity.]


Scheme 1

geometrical parameters closely corresponding to those of **2**. No dihydrogen isomer was found as an energy minimum.

(PNP^{Cy})ReH₄ is an operationally unsaturated complex and does indeed bind H₂ (Scheme 1) to produce a mixture of two tautomers: (PNP^{Cy})ReH₆ (**3**) and (PN-HP^{Cy})ReH₅ (**4**). Under an H₂ atmosphere, the hydride signal of **4** (t, $J_{HP} = 17$ Hz) can be observed at ambient temperature by ¹H NMR at -6.82 ppm. The peaks corresponding to **2** and **3** are coalesced at ambient temperature and give rise to a very broad upfield hydride resonance and one very broad ³¹P NMR resonance. At -40 °C and below, the resonances of **2** and **3** decoalesce to give two broad triplets for their corresponding hydrides and two singlets for their corresponding Si-Me groups in ¹H NMR, as well as two singlets in the ³¹P{¹H} NMR.

We undertook a DFT computational study of the Re polyhydrides $2^{H}-5^{H}$ (Scheme 2). Tautomerization of 2^{H} to 5^{H} is found to be highly unfavorable, whereas the tautomers 3^{H} and 4^{H} are approximately isoenergetic. Both 3^{H} and 4^{H} are saturated 18e complexes, while 2^{H} and 5^{H} are unsaturated 16e complexes. However, the Re center in 2^{H} is stabilized by π -donation from N; no such option exists for 5^{H} . The much shorter Re–N bond in 2^{H} (2.062 Å) than in 3^{H} (2.209 Å) is consistent with a multiple Re–N bond in 2^{H} . In contrast, the lengths of

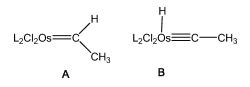
the dative Re—N bonds in **4**^H (2.362 Å) and **5**^H (2.357 Å) are very similar. The addition of H₂ to the unambiguously unsaturated **5**^H is favorable by 25.3 kcal/mol, while the addition of H₂ to the *operationally* unsaturated **2**^H is favorable only by 2.5 kcal/mol.

Our computational results are consistent with the experimental observation of species 2-4 and not of 5 and with the observation that H₂ addition to 2 is reversible and that even in the presence of excess H₂ and at -80 °C the conversion of (PNP^{Cy})ReH₄ to "(PNP^{Cy})ReH₆" isomers is incomplete.¹⁰ (PNP^{Cy})ReH₄ (2) also slowly exchanges its hydrides and the hydrogens of the cyclohexyl rings with D from C₆D₆ at 25 °C.¹¹

The unsaturated character of $(PNP^{Cy})ReH_4$ allows it to react with ethylene rapidly (10 min) at 25 °C to

(7) (PNP^{Cy})ReH₄ (2). A 200 mL flask equipped with a Kontes Teflon stopcock was charged with (PNP^{Cy})ReOCl₂ (1) (0.730 g, 0.876 mmol), Mg powder (0.20 g, 8.3 mmol), 20 mL of ether, and a stir bar. The suspension was degassed and the flask was refilled with H₂ (ca. 1 atm). The contents of the flask were vigorously stirred for 72 h, over which time the color changed from green to red-purple, then the volatiles were removed in vacuo. The residue was triturated with heptane, extracted with pentane, and filtered. The volume of the filtrate was reduced to ca. 5 mL in vacuo, and this solution was kept at -30 °C for 24 h. Red-purple crystalline product was separated by decantation and washed with cold pentane and dried in vacuo. Yield: 0.410 g (63%). The exact time needed for the completion of the reaction depends on the amount and the surface area of Mg used. Utilization of a large excess of Mg is not detrimental, and the remaining Mg can be reused in future preparations of **2**. Mg activated by previous reaction runs generally promotes faster (several hours) conversion to the product. ¹H NMR (C₆D₆): δ 2.23 (br d, 12 Hz, 4 H, Cy), 1.83 (br t, 8 Hz, 4 H, Cy), 1.74 (br m, 12 H, Cy), 1.40–1.60 (br m, 12 H, Cy), 1.06–1.30 (br m, 12 H, Cy), 0.94 (t, 6 Hz, 4 H, PCH₂Si), 0.40 (s, 12 H, SiCH₃), -9.24 (t, 22 Hz, ReH₄). The hydride resonance at -9.24 ppm remains essentially unchanged upon cooling the toluene-*d*₈ solution (PNP^C))ReH₄ down to -80 °C. ³¹P{¹H} NMR (C₆D₆): δ 56.2 (s). ¹³C{¹H} NMR (C₆D₆): δ 41.4 (t, 14 Hz, CH of PCy), 27.3 (t, 6 Hz, 0 FCy), 28.6 (s, CH₂ of PCy), 27.4 (t, 5 Hz, CH₂ of PCY), 27.3 (t, 6 Hz, CH₂ of PCy), 26.9 (s, CH₂ of PCy), 10.7 (s, PCH₂Si), 6.7 (t, 2 Hz, SiCH₃).

(8) Crystallographic data for 2 (-162 °C): a = 10.6141(4) Å, b = 11.1066(4) Å, c = 17.6560(7) Å; $\alpha = 71.902(1)^{\circ}$, $\beta = 75.498(1)^{\circ}$, $\gamma = 78.701(1)^{\circ}$ with Z = 2 in space group $P\overline{1}$. R(F) = 0.0178 for 9824 reflections with $I > 2.33\sigma(I)$. Crystallographic data for **6** (-158 °C): a = 11.2777(3) Å, b = 11.5672(3) Å, c = 15.5630(5) Å; $\alpha = 92.868(1)^{\circ}$, $\beta = 94.163(1)^{\circ}$, $\gamma = 109.906(1)^{\circ}$, Z = 2 in space group $P\overline{1}$. R(F) = 0.0153 for 9898 reflections with $I > 3\sigma(I)$.


(9) For discussion of related distortions involving metal hydrides see ref 2b and: (a) Clark, J. R.; Pulvirenti, A. L.; Fanwick, P. E.; Sigalas, M.; Eisenstein, O.; Rothwell, I. P. *Inorg. Chem.* **1997**, *36*, 3623. (b) Yandulov, D. V.; Huang, D.; Huffman, J. C.; Caulton, K. G. *Inorg. Chem.* **2000**, *39*, 1919.

(10) Contrast: (a) Kim, Y.; Deng, H.; Meek, D. W.; Wojcicki, A. J. Am. Chem. Soc. **1990**, 112, 2798. (b) Luo, X.-L.; Crabtree, R. H. J. Chem. Soc., Dalton Trans. **1991**, 587. (c) Michos, D.; Luo, X.-L.; Crabtree, R. H. J. Chem. Soc., Dalton Trans. **1992**, 1735. (d) Kim, Y.; Deng, H.; Galucci, J. C.; Wojcicki, A. Inorg. Chem. **1996**, 35, 7166.

(11) For selected reports relevant to intra- and intermolecular C-H activation by Re, Ru, and Os polyhydrides see: (a) Baudry, D.; Ephritikhine, M.; Felkin, H.; Zakrzewski, J. *Tetrahedron Lett.* **1984**, 25, 1283. (b) Kelle Zeiher, E. H.; DeWit, D. G.; Caulton, K. G. J. Am. Chem. Soc. **1984**, 106, 7006. (c) Carr, S. W.; Fowles, E. H.; Fontaine, X. L. R.; Shaw, B. L. J. Chem. Soc. Dalton Trans. **1990**, 573. (d) Borowski, A. F.; Sabo-Etienne, S.; Christ, M. L.; Donnadieu, B.; Chaudret, B. Organometallics **1996**, 15, 1427. (e) Six, C.; Gabor, B.; Goerls, H.; Mynott, R.; Philipps, P.; Leitner, W. Organometallics **1999**, 18, 3316. (f) Barrio, P.; Castarlenas, R.; Esteruelas, M. A.; Onate, E. Organometallics **2001**, 20, 2635.

fragment C₂H₄ into hydride and carbyne ligands (Scheme 1). In this reaction, the four original hydride ligands are "abstracted" by two molecules of ethylene, effectively a *four*-electron reduction of Re, which enables reconstruction (and reduction) of ethylene into a hydride and a strongly π -acidic ethylidyne ligand. The ethylidyne moiety is characterized by the downfield ¹³C NMR resonance of the α -carbon (**6**, 259.5 ppm; **7**, 271.0 ppm).¹²

While ethylene does bind to the hydridocarbyne, its enthalpy of binding is modest (like that of H_2 binding to (PNP^{Cy})ReH₄) to the point that it can be removed from the colorless **6** in a vacuum, albeit under drastic conditions (0.1 Torr, >100 °C),¹³ to give isolable, operationally unsaturated, deep red (PNP^{Cy})ReH(CCH₃) (7). Ethylene in **6** does not undergo free rotation at ambient temperature on the NMR time scale, as evidenced by the observation of two different ¹H NMR resonances for the two diastereotopic pairs of H's in the C₂H₄ unit and a single ¹³C NMR signal. Solution NMR evidence is thus consistent with the alignment of the C=C bond along the P-Re-P vector, as found in the solid state (Figure 1b).

(12) On the formation of Re carbynes from alkynes^{10a} and Os carbynes from alkenes^{10b} and alkynes^{10c-e} see: (a) Leeaphon, M.; Ondracek, A. L.; Thomas, R. J.; Fanwick, P. E.; Walton, R. A. *J. Am. Chem. Soc.* **1995**, *117*, 9715. (b) Spivak, G. J.; Coalter, J. N.; Olivan, M.; Eisenstein, O.; Caulton, K. G. *Organometallics* **1998**, *17*, 999. (c) Esteruelas, M. A.; Lahoz, F. J.; Onate, E.; Oro, L. A.; Valero, C.; Zeier, B. *J. Am. Chem. Soc.* **1995**, *117*, 7935. (d) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Onate, E.; Oro, L. A.; Valero, C.; Zeier, B. J. Am. Chem. Soc. **1995**, *117*, 7935. (d) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. *J. Am. Chem. Soc.* **1993**, *115*, 4683. (e) Buil, M. L.; Eisenstein, O.; Esteruelas, M. A.; Garcia-Yebra, C.; Gutierrez-Puebla, E.; Olivan, M.; Onate, E.; Ruiz, N.; Tajada, M. A. *Organometallics* **1999**, *18*, 4949.

(13) Only ethylene was detected among trapped volatiles from the thermolysis of $\mathbf{6}$.

These results show that an amide supporting ligand, even one with two (electron-withdrawing) silyl substituents, has sufficient π -donor ability to make thermodynamically accessible either unsaturated polyhydride or carbyne complexes. The mechanism of conversion of ethylene to hydride¹⁴ and ethylidyne may involve either vinyl C–H oxidative addition or hydrogenation to a ReCH₂CH₃ intermediate. Because the product is not Re=CHCH₃, but instead a hydride carbyne, this is similar to an osmium analogue (**B** preferred over **A**), while the latter (an unsaturated carbene complex) is preferred for the 4d analogue Ru.^{4,12,15}

This work shows that the (PNP)Re substructure has the versatility to (a) permit ready ligand (e.g., H_2 or olefin) loss and thus access unsaturated rhenium and still retain (b) an ability of Re to bind a new substrate and (c) effect olefin hydrogenation and C/H bond cleavage. These capabilities can be attributed to an amide nitrogen which can either donate or retain a lone electron pair and to a metal that has the ability to span a large range of oxidation states, including +5, and still have sufficient π -basicity to bind an olefin at the d² configuration in **2** and **6**.

Acknowledgment. This work was supported by the Department of Energy. L.A.W. acknowledges NSF for a predoctoral fellowship.

Supporting Information Available: Synthetic, spectroscopic and crystallographic, and computational details and the drawings and Cartesian coordinates of DFT geometries. Also two crystallographic files are available free of charge via the Internet at http://pubs.acs.org.

OM0210412

(15) For examples of relative stability of the carbene and hydridocarbyne substructures on Ta and W see: (a) Fellmann, J. D.; Turner, H. W.; Schrock, R. R. *J. Am. Chem. Soc.* **1980**, *102*, 6609. (b) Holmes, S. J.; Schrock, R. R. *J. Am. Chem. Soc.* **1981**, *103*, 4599. (c) Bannwart, E.; Jacobsen, H.; Furno, F.; Berke, H. Organometallics **2000**, *19*, 3605.

⁽¹⁴⁾ Conversion of $W-CH_2CH_3$ to $W\equiv C-CH_3$ has been reported: (a) Shih, K.-Y.; Tortland, K.; Seidel, S. W.; Schrock, R. R. *J. Am. Chem. Soc.* **1994**, *116*, 12103. (b) Dobbs, D. A.; Schrock, R. R.; Davis, W. M. Inorg. Chim. Acta **1997**, *263*, 171.