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Abstract: Secondary S-alkyl-O-ethyl (or O-neopentyl) xanthates
can be converted into the corresponding bromides by heating with
ethyl 2-bromo-2-methylpropionate and cumyl peroxide in refluxing
chlorobenzene; this transformation can be coupled to a xanthate
transfer radical addition to an olefin.
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We have, over the past few years, shown that xanthates 1
and related dithiocarbonate derivatives undergo an effi-
cient group transfer radical addition to a variety of olefins
2 (Scheme 1).1 The adducts, 3, are also xanthates and lend
themselves to a number of subsequent radical and non-
radical transformations. The xanthate group may thus be
used in another C-C bond forming radical sequence2 or re-
ductively removed using tri-n-butyltinhydride, Raney
nickel, nickel boride, or by the action of lauroyl peroxide
in isopropanol.3 Alternatively, the xanthate group can be
ionically cleaved to the corresponding thiol with alkali or
a primary or secondary amine.4 Alkylation of the resulting
thiol with 1,4-dibromobutane converts it to the sulfonium
bromide 4, which acts as a reasonably effective leaving
group.5 In the present Letter, we describe the direct trans-
formation of a secondary xanthate into the corresponding
bromide 5, thus accessing an equally powerful nucleofuge
(Scheme 1)

Scheme 1

Our concept is outlined in Scheme 2. Thermal decompo-
sition of cumyl peroxide generates highly reactive methyl
radicals which rapidly interact with the thiocarbonyl
group of the xanthate leading, by an addition-fragmenta-
tion sequence, to the formation of radicals R�. Although
these radicals can exchange a xanthate group by reacting

with the starting xanthate, this is a degenerate process that
does not compete with the desired bromine atom abstrac-
tion from ethyl 2-bromo-2-methylpropionate leading to
bromides 5a–f and isobutyryl radicals 6. In contrast to the
initial methyl radicals, the isobutyryl radicals 6 are too
stabilised to propagate the chain and presumably decay by
the usual radical-radical interactions (dimerisation and
disproportionation). Stoichiometric amounts of peroxide
are therefore required to ensure complete transformation
of the substrate.

Scheme 2

Indeed, gradual addition of cumyl peroxide (1.5 equiv) to
a refluxing solution of xanthate 3a–f (1.0 equiv) and ethyl
2-bromo-2-methylpropionate (ethyl bromoisobutyrate)
(5.0 equiv) in chlorobenzene resulted in the effective for-
mation of bromides 5a–f (30–85%).6 A fraction of the me-
thyl radicals is consumed by direct reaction with the
bromoisobutyrate; hence the need for over-stoichiometric
amounts of cumyl peroxide and an excess of the bromine
atom transfer agent. A number of examples is collected in
the Figure. Except for xanthate 3c, which gave only a poor
yield of the corresponding bromide, the desired conver-
sion occurred efficiently. The use of O-neopentyl xan-
thates in some cases was dictated by the need to facilitate
chromatographic separation of the bromide from the other
products of the reaction. We examined other peroxides
such as tert-butylperoxide and lauroyl peroxide as media-
tors for the reaction but these turned out to be generally in-
ferior to cumyl peroxide. Essentially all the precursors
were made by the xanthate transfer radical addition to ole-
fins containing various functional groups. Of special in-
terest are lactones 3e,f and 5e,f because they represent
sub-structures of many natural products.7
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Figure

We found in some cases that the intermolecular radical
addition to the olefin and the xanthate exchange with bro-
mine could be done in one pot, as illustrated by two exam-
ples pictured in Scheme 3. The yield in the second
example refers to the material obtained after one recrystal-
lisation of the concentrated reaction mixture. The actual
yield is obviously higher.

Not surprisingly, when the bromine atom was introduced
close to a nucleophilic site, a subsequent ionic cyclisation
was observed, as shown by the modestly efficient trans-
formations in Scheme 4. The formation of lactam 5i and
cyclic carbamate 5j could not be avoided due to the prox-
imity of the nucleophile in both cases. Such reactions are
nevertheless synthetically useful since the C-S bond of the
xanthate can be replaced by a C-N bond and a C-O bond
respectively.

Scheme 4

One further interesting point concerns the choice of bro-
moisobutyrate as the bromine transfer agent. Our initial
experiments were in fact carried out with bromotrichlom-
ethane, a more commonly used bromine atom source.8

The results were disappointing: complex mixtures were
invariably obtained. We ascribed these initial failures to
the relatively high reactivity of the electrophilic trichlor-
omethyl radical generated upon bromine atom abstraction
from the bromotrichloromethane. Such radicals are
known to abstract hydrogen atoms leading to the uncon-
trolled formation of unwanted side products. Cristol and
Seapy,9 who attempted to photochemically replace the C-
O bond in xanhates using BrCCl3, also obtained poor re-
sults.

In conclusion, we have described a simple, yet efficient
and flexible method for replacing a xanthate group with a
bromine atom under neutral conditions. A number of
functional groups commonly encountered in organic syn-
thesis are tolerated. This new functional group inter-
change process, in combination with the powerful C-C
bond forming ability of the xanthate transfer radical addi-
tion, opens access to structures not easily available other-
wise.

Scheme 3 Conditions: cumyl peroxide 1.5 equiv. ethyl bromoiso-
butyrate 3 equiv. olefin 3 equiv. chlorobenzene (0.1 M). Reflux 6–8 h.
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