Photolactamization: A Novel Synthetic Entry into Large Ring-Sized Lactams

Gerhard Quinkert^{*}, Hans Peter Nestler, Bernd Schumacher, Michael del Grosso, Gerd Dürner, and Jan W. Bats

> Institut für Organische Chemie der Universität, Niederurseler Hang, D 6000 Frankfurt am Main 50

Key Words: photolactamization, macrocyclic lactams, diene ketenes, o-quinol acetates

Abstract: Diene ketenes smoothly accessible by photochemical ring cleavage of o-quinol acetates, in the presence of primary or secondary amines afford the corresponding amides. In an intramolecular version of this reaction macrocyclic lactams of type A are produced, if aminoalkylated o-quinol acetates of type C are used as photo reactants. These photo reactants are available on acid mediated removal of the Boc-protecting group from Wessely acetoxylation products of type D, easily formed via compounds of type E from aminoalkylated phenols of type F.

Photolactamization¹ defines a new preparative way by which large ring-sized lactams of type **A** are photochemically accessible from aminoalkyl-substituted ortho-quinol acetates of type **C** via transient diene ketenes³ of type **B**. As ortho-quinol acetates are usually reached by Wessely acetoxylation, the whole procedure begins with appropriately substituted phenols of type **E**, where the amino group in the side chain has been protected (by the Boc-group). On treatment with TFA carbamates of type **D** are converted into photo reactants of Type **C**. The latter, without isolation, are irradiated in the presence of an excess of a *tert*-amine.

According to Table 1 the chemical yield (related to compounds of type D) becomes acceptable for lactams of type A with larger than 15-membered rings.

The structures of several of the photolactams have been determined by single crystal X-ray diffraction⁵. Table 2 informs about torsions angles observed for lactams of type A in the crystalline state. The data fit well in the structural characteristics of the carboxylic amide group described by P. Chakrabarti and J.D. Dunitz⁶.

Aminoalkyl-substituted phenols of type \mathbf{F} (X = NH₂; n = p or p+1) were prepared from the corresponding hydroxyalkyl-substituted phenols \mathbf{F} (X = OH; n = p)² on reaction of the phenoxyalkyl methanesulfonates \mathbf{F} (X = OSO₂CH₃; n = p) with sodium azide or cyanide, respectively, in each case followed by LiAlH₄ reduction ^{7,8,9}.

COMPD.	n	R ¹	R ²	NMIª	DABCO ^a	TMEDAª
Aa	5	H	Н	23(17)	6(7)	4(12)
Ab	6	н	Н	47(15)	17(18)	10(17)
Ac	7	н	H	48(5)	22(15)	15(17)
Ad	8	н	Н	61(5)	42(13)	28(19)
Ae	9	н	Н	52(11)	48(15)	33(14)
Af	10	н	Н	69(7)	64(12)	57(17)
rac-Ag	10	н	Me	53(-)		
rac-Ai	10	н	PhSO ₂	50(-)	49(-)	45(-)
rac-Aj	10	Me	H	62(-)		
Ak	11	н	Н	63(15)	59(16)	54(13)
rac-Al	11	Ph	H	60(-)		
Al	11	Ph	H	48(-)		
Am	12	H	H	65(6)	61(11)	54(13)

Table 1. Photolactams of Type A Formed in the Presence of tert-Amines

a. The figures (in parentheses) indicate chemical yields (%) of monolides (diolides)

COMPD.	$C(\beta)-C(\alpha)-N-C(1) C(\alpha)-N-C(1)-C(2) N-C(1)-C(2)-C(3) C(1)-C(2)-C(3)-C(4) C(3)-C(4)-C(5)-C(3)-C(3)-C(4)-C(5)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3$							
Aa	-127.02(0.84)	172.94(0.71)	-59.90(0.89)	-60.51(1.04)	138.99(0.88)			
Ac	101.80(0.20)	175.17(0.16)	99.27(0.17)	91.57(0.21)	159.62(0.20)			
Ag ^a	113(1) 124(1) 108(1)	176(1) -172(1) -178(1)	126(1) 116(1) 123(1)	-112(1) -108(1) -114(1)	173(1) -174(1) 179(1)			
rac-Ai	-125.3(3)	-178.1(3)	-123.2(1)	130.9(3)	-173.9(3)			
rac-Al	-115(1)	176(1)	-67(1)	-119(1)	176(1)			
Am	-70.14(0.32)	179.60(0.21)	-101.87(0.25)	132.53(0.29)	174.99(0.28)			

Table 2. Dihedral Angles of Photolactams of Type A

a. Ag was obtained from a solution of rac-Ag by spontaneous crystallization

REFERENCES AND NOTES

- 1. For photolactonization cf. lit.²
- G. Quinkert, U.-M. Billhardt, H. Jakob, G. Fischer, J. Glenneberg, P. Nagler, V. Autze, N. Heim, M. Wacker, T. Schwalbe, Y. Kurth, J.W. Bats, G. Dürner, G. Zimmermann, H. Kessler, *Helv. Chim. Acta* 1987, 70, 771.
- 3. For diene ketenes from ortho-quinolacetates cf. lit.⁴
- G. Quinkert, E. Kleiner, B.-J. Freitag, J. Glenneberg, U.-M. Billhardt, F. Cech, K.R. Schmieder, C. Schudok, H.-C. Steinmetzer, J.W. Bats, G. Zimmermann, G. Dürner, D. Rehm, *Helv. Chim.* Acta 1986, 69, 469.

5. The structures of compounds Aa, Ac, Ag, rac-Ai, rac-Al, and Am were determined by X-ray structure analyses: Enraf-Nonius CAD4 diffractometer, $Cu-K_{\alpha}$ radiation, structure determination by direct methods, SDP program system. Complete results have been deposited and are available on request from Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftliche Information mbH, D 7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-56055, the names of the authors and the journal citation.

The crystals of Aa (dichloromethane/hexane, m.p. 134-135°) are monoclinic, $P2_1/n$ (No. 14), a = 12.329(2), b = 9.408(3), c = 12.559(3) Å, $\beta = 98.64(2)^\circ$; V = 1440(1) Å³; Z = 4; $\rho_{calc} = 1.159$ g/cm³; hemisphere through $2\Theta = 120^\circ$; 2140 independent reflections, 1725 with I > 0, 163 variables; $R(F) = 0.122, R_{\omega}(F) = 0.113$.

The crystals of Ac (dichloromethane/hexane, m.p. 113.5-114°) are orthorhombic, Pcab (No. 61), a = 9.210(2), b = 13.745(1), c = 25.590(1) Å; V = 3240(1) Å³; Z = 8; $\rho_{calc} = 1.146$ g/cm³; quadrant through $2\Theta = 120^{\circ}$; 2414 independent reflections, 2337 with I > 0, 282 variables; R(F) = 0.044, $R_{\omega}(F) = 0.035$.

The crystals of Ag (ethyl acetate/hexane, m.p. 121-124°) are trigonal, P3₁ (No. 144), a = b = 19.709(2), c = 13.865(2) Å; V = 4664(2) Å³; Z = 9 (3 independent molecules); $\rho_{calc} = 1.075$ g/cm³; sextant through $2\Theta = 44^{\circ}$ (Mo-K_{α} radiation); 3815 independent reflections, 3452 with I > 0, 647 variables; R(F) = 0.104, $R_{\omega}(F) = 0.068$.

The crystals of *rac*-Ai (ethyl acetate/hexane, m.p. 149-151.5°) are monoclinic, $P2_1/a$ (No. 14), a = 9.6396(6), b = 10.1300(7), c = 21.791(2) Å, $\beta = 98.779(6)$ °; V = 2103.0(5) Å³; Z = 4; $\rho_{calc} = 1.060$ g/cm³; hemisphere through $2\Theta = 120^{\circ}$; 3124 independent reflections, 2988 with $I > \sigma$, 218 variables; $R(F) = 0.075, R_{\omega}(F) = 0.058$.

The crystals of rac-Al (ether/pentane, m.p. 122-123.5°) are monoclinic, $P2_1/n$ (No. 14), a = 21.368(5), b = 5.1233(6), c = 23.266(7) Å, $\beta = 101.00(2)^\circ$; V = 2500(2) Å³; Z = 4; $\rho_{calc} = 1.093$ g/cm³; quadrant through $2\Theta = 100^\circ$; 2550 independent reflections, 1445 with I > 0, 280 variables; R(F) = 0.164, $R_{\omega}(F) = 0.124$.

The crystals of **Am** (dichloromethane/hexane, m.p. 104-105°) are monoclinic, $P2_1/c$ (No. 14), a = 10.668(1), b = 9.3520(9), c = 21.917(2) Å, $\beta = 96.547(9)^\circ$; V = 2172.2(7) Å³; Z = 4; $\rho_{calc} = 1.069$ g/cm³; hemisphere through $2\Theta = 130^\circ$; 3686 independent reflections, 3627 with I > 0, 227 variables; $R(F) = 0.076, R_{\omega}(F) = 0.066$.

- 6. P. Chakrabarti, J.D. Dunitz, Helv. Chim. Acta 1982, 65, 1555.
- 7. General Procedure for Macrocyclization: A 10-ml round-bottomed flask equipped with a magnetic stirring bar and a gas bubbler is charged with 1 mmol of the quinol acetates of type D, 2 ml of dry dichloromethane, and 0.8 ml (10 mmol; 10 eq) of TFA. The mixture is stirred at room temperature until the gas evolution ceases and poured into a 1 l cylindrical irradiation vessel charged with a solution of the tertiary amine in 1 l of dry dichloromethane. The obtained solution of quinol acetates of type C ($c = 10^{-3}$ mol/l) is irradiated in a Rayonet reactor with ultraviolet light ($\lambda > 340$ nm) until no dienone remains (control by absorbance at $\lambda = 360$ nm). The solvent is removed in a rotary evaporator and the residue subjected to column chromatography using 20 g of silica gel. The typical amounts of the tertiary amine were 1.2 ml (15 mmol; 15 eq) of NMI, 1.14 g (7.5 mmol; 7.5 mmol) of DABCO, or 1.2 ml (7.5 mmol; 7.5 eq) of TMEDA.
- 8. The work reported here was generously supported by the Deutsche Forschungsgemeinschaft (Project Qu 15/25), the Fonds der Chemischen Industrie, the Bundesminister für Wirtschaft (Project 7882 AIF), and Hoechst AG.
- 9. Satisfactory spectroscopic and elemental analysis data were obtained using chromatographically purified and homogeneous samples of compounds of type **A**, type **D** (as mixtures), and type **E**.

(Received in Germany 27 January 1992)