## DIRECT ELECTROCHEMICAL SYNTHESIS OF

## METAL PENTAFLUOROTHIOPHENOLATES

# V. A. Shreider

UDC 541.138.2:547.569.1'161:547.562.4

The need for the development of new photoconductors, luminophors, and electroluminescent materials has created a need for improvements in the methods used to synthesize metal sulfides. These may be obtained from alkyl derivatives of the metals by decomposition in the presence of hydrogen sulfide, or metal mercaptides may be used as the starting material [1, 2]. In the synthesis of metal mercaptides as currently practiced classical methods are used extensively — methods in which the mercaptan is used as an extraction agent for aqueous or nonaqueous solutions of the corresponding metal salts [3-8].

As recently reported by Said and Tuck [9], zinc, cadmium, mercury, indium, thallium, tin, and lead thiolates have been synthesized by electrochemical dissolution of an anode of the corresponding metal in the presence of a mercaptan. In that paper it was noted that the electrochemical method is considerably simpler than the chemical method, since the reaction proceeds with a high yield, in a single stage. Moreover, it was shown that in the electrochemical reaction, not only mercaptans can be used, but also certain disulfides.

The chemical methods that have been reported for the synthesis of metal pentafluorothiophenolates [10-15] by the interaction of pentafluorothiphenol with aqueous or nonaqueous solutions of the salts of the corresponding metals are frequently complicated by the formation of bis(pentafluorophenyl)disulfide [10] as a result of oxidation by higher-valence metal cations.

In the work reported here, we accomplished the electrochemical synthesis of metal pentafluorothiophenolates; in developing this synthesis, we considered that the electrochemical reaction will involve not only pentafluorothiophenol, but also its disulfide.

### DISCUSSION OF RESULTS

As had been assumed, in the anodic dissolution of metal electrodes in the presence of pentafluorothiophenol, metal pentafluorothiophenolates are formed with yields of 15-20%, depending on the anode material.

$$\begin{array}{c} C_{6}F_{5}SH \\ n = 1 - 3 \end{array} \xrightarrow{\text{Anodic dissolution of electrodes of}} Zn, Cd, Hg, Sn, Pb, Tl, Cu, Bi, Ni} (C_{6}F_{5}S)_{n}M \end{array}$$

In this electrochemical reaction, we were not successful in isolating bis(pentafluorophenyl)disulfide, which is reduced at the cathode to the pentafluorothiolate anion.

$$C_6F_5SSC_6F_5 \xrightarrow{Cathodic reduction} 2C_6F_5S$$

However, the pentafluorothiolate anion that is formed as a result of this reaction, the same as the anion formed by reduction of pentafluorothiophenol

$$C_6F_5SH \xrightarrow{Cathodic evolution of hydrogen} C_6F_5S^{-1}$$

acting as a nucleophile, attacks the aromatic ring of the original thiophenol molecule to form bisthiophenylene. This process does not stop in the first stage, but continues, forming perfluoropolythiophenylenes that are insoluble in the electrolyte

$$C_6F_5SH \xrightarrow{+C_6F_6S^-} C_6F_5SC_6F_4SH \xrightarrow{+C_6F_6S^-} \cdots$$

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1832-1836, August, 1984. Original article submitted June 10, 1983.

| Anode                                              | Product                                                                                                                                                                                                                                                                                                                                                                                                | Color                                                        | mp,°C                                                                                                         |                                                                      | Fou                                                                  | nd,%                                                                 | Calculated, %                  |                                                                      |                                                                                            |                                                                      |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                               | С                                                                    | F                                                                    | M *                                                                  | н                              | С                                                                    | F                                                                                          | M *                                                                  |
| Zn<br>Cd<br>Hg<br>Sn<br>Pb<br>Tl<br>Cu<br>Ni<br>Co | $\begin{array}{c} {\rm Zn}({\rm C}_6{\rm F}_5{\rm S})_2\\ {\rm Cd}({\rm SC}_6{\rm F}_5)_2\\ {\rm Hg}({\rm SC}_6{\rm F}_5)_2\\ {\rm Sn}({\rm SC}_6{\rm F}_5)_4\\ {\rm Pb}({\rm C}_6{\rm F}_5{\rm S})_2\\ {\rm Tl}({\rm SC}_6{\rm F}_5)_2\\ {\rm Cu}({\rm C}_6{\rm F}_5{\rm S})\\ {\rm Cu}({\rm C}_6{\rm F}_5{\rm S})\\ {\rm Ni}({\rm SC}_6{\rm F}_5)_2\\ {\rm Co}({\rm SC}_6{\rm F}_5)_2\\ \end{array}$ | White<br>Same<br>Yellow<br>Same<br>»<br>Claret<br>Dark green | $\begin{array}{c} > 280 \\ > 280 \\ 186 \\ 143 \\ 255 \\ 280 \\ > 280 \\ > 280 \\ > 280 \\ > 280 \end{array}$ | 31,3<br>27,6<br>24,0<br>30,7<br>23,2<br>17,2<br>27,5<br>31,6<br>31,9 | 40,6<br>36,6<br>30,8<br>40,9<br>30,8<br>23,0<br>36,5<br>41,9<br>42,5 | 13,7<br>22,3<br>32,5<br>23,7<br>34,8<br>48,9<br>24,5<br>13,1<br>12,5 |                                | 31,1<br>28,2<br>24,1<br>31,5<br>23,8<br>17,9<br>27,4<br>31,5<br>31,6 | $\begin{array}{r} 41,0\\ 37,2\\ 31,7\\ 41,5\\ 31,4\\ 23,6\\ 36,2\\ 41,6\\ 41,7\end{array}$ | 14,1<br>22,0<br>33,5<br>23,0<br>34,2<br>50,7<br>24,2<br>12,9<br>12,9 |
| Bi<br>Al<br>Mg<br>Zr<br>Pt                         | Bi(SC <sub>6</sub> F <sub>5</sub> ) <sub>3</sub><br>Polymer<br>Same<br>%<br>C <sub>6</sub> F <sub>5</sub> SSC <sub>6</sub> F <sub>5</sub><br>Cathodic<br>polymer                                                                                                                                                                                                                                       | Yellow<br>White<br>Same<br>»<br>»                            | >280<br>46                                                                                                    | 26,5<br>32,1<br>30,75<br>35,0<br>36,5<br>39,7                        | 35,0<br>38,4<br>38,0<br>37,20<br>47,9<br>41,8                        | N/a†<br>8,75<br>N/a†<br>N/a†<br>                                     | -<br>0,91<br>1,20<br>0,48<br>- | 26,8<br>36,2                                                         | 35,3<br>47,7                                                                               | 25,9<br>–                                                            |

TABLE 1. Synthesized Metal Pentafluorothiolates, and Analytical Data

\* M = metal. The metal contents were determined by x-ray fluorescence spectroscopy for all of the metals except aluminum. The content of Al in the polymer was determined by complexometric titration. † Not analyzed.

The formation of the polymeric product lowers the yield of the metal thiolates as a result of decomposition of the thiophenol, and it also contaminates the mercaptides, particularly those that are formed as precipitates. For this reason, the electrosynthesis of metal thiolates in an unpartitioned cell is accompanied by side cathod-ic process of decomposition of pentafluorothiophenol. Moreover, the reduction of acetonitrile soluble penta-fluorothiophenolates of mercury, lead, bismuth, and tin leads to cathodic deposition of the metal on the electrode.

In order to eliminate the cathodic process of decomposition of the pentafluorothiophenol, we used an electrolysis cell with a ceramic filter separating the anode and cathode spaces. However, even the use of the ceramic membrane did not completely eliminate the formation of perfluoropolythiophenylenes in the anode section. Even so, at the initial moment of electrolysis, with a low yield relative to pentafluorothio-phenol (20-30%) and a 60-70% yield relative to the current, we were able to synthesize pentafluorothiophenol-ates of zinc, cadmium, nickel, cobalt, thallium, tin, lead, mercury, copper, and bismuth. The use of aluminum, magnesium, or zirconium anodes, even in the case of a partitioned cell, led to the formation of a white precipitate, containing polymeric products, as indicated by IR spectroscopic data.

When using a platinum anode, the thiophenol is oxidized to bis(pentafluorophenyl) disulfide.

$$2C_{6}F_{5}SH \xrightarrow{Oxidation on platinum anode} C_{6}F_{5}SSC_{6}F_{5} + 2H^{-1}$$

When using an unpartitioned cell with two platinum electrodes, an insoluble polymeric product is formed on the cathode, containing an average of four phenyl rings as determined by elemental analysis.

The results obtained in the present work show that the electrochemical synthesis of metal pentafluorothiophenolates by anodic dissolution of metals in the presence of pentafluorothiophenol is possible in principle; however, in contrast to the electrochemical synthesis of the nonfluorinated analogs [7], this process is severely complicated by cathodic decomposition of the pentafluorothiophenol.

### EXPERIMENTAL

The electrolysis was performed in the galvanostatic regime by means of a P-5848 potentiostat, in a glass cell with a 1-mm diameter platinum wire as the cathode and a strip of the particular test metal (area  $1-2 \text{ cm}^2$ ) as the anode. In the synthesis of the mercury pentafluorothiophenolate, mercury on the bottom of the electrolyzer was used as the anode.

The electrolyte, consisting of 0.7 g pentafluorothiophenol, 0.1 g tetrabutylammonium tetrafluoroborate, and 10 ml absolute MeCN, was electrolyzed for 1 h with a current of 50 mA; the electrolyte was evaporated to

|                                   | +                                   | -                          |                   |                             |            |                  |                             |                     |
|-----------------------------------|-------------------------------------|----------------------------|-------------------|-----------------------------|------------|------------------|-----------------------------|---------------------|
| $Pb(SC_{\epsilon}F_{\delta})_{2}$ | Tl(SC <sub>5</sub> F <sub>5</sub> ) | $Cd(SC_{\delta}F_{5})_{2}$ | Cu (SC₅F₅)        | Ni (S                       | 5CeF5)2    | Zn (SC₀F         | $ _{2}$ $ _{Sn(SC_6F_5)_4}$ | $Co(SC_6F_5)_2$     |
|                                   |                                     |                            |                   |                             |            |                  |                             | 410 br              |
| 445 br                            | 444 m                               | 200 vbr                    | 442 br            | 48                          | 0 m        | 445 bi           | r 443 br                    | 470 br              |
| 513 br                            | 510 m                               | 512 m                      | 511 br            | 51                          | 5  br      | 513 b            | r 513 br                    | 510 m               |
| 623 s<br>628 s                    | 620 m                               | 631 s                      | 588 m<br>627 s    | 62<br>63                    | 4 m<br>5s  | 629 . m          | 622 m                       | 628 v br            |
| 714 m                             | 712 m                               | 711 vbr                    | 713 in            | 70                          | 8m         | 712 rr           | 1 711 m                     | 707 m               |
| 858 s                             | 856 V                               | 719 m<br>859 vs            | 855 VS            | 85                          | 2 s        | 855 v            | s 859 vs                    | 865 in              |
| 865 s<br>963 vs                   | 967 vs                              |                            | 860.111           |                             | _          | 860 11           | 1                           | 872 s               |
| 973 s                             | 992 m                               | 976 vs                     | 972 vs<br>977 vs  | 97                          | 9 s        | 970 v            | s 974 vs                    | 985 vs              |
| 1010 m<br>1077 m                  | 1078 s                              | 1020 m<br>1084 s           | 1010 m<br>1088 s  | 1087 s<br>1143 m<br>1292 br |            | 1014 s<br>1080 v | 1016 m<br>s 1088 vs         | 1012 m<br>1098 vs   |
| 1086 m<br>1130 br                 | 1495 m                              | 1090 s                     | 1097 s            |                             |            | 1094 s<br>1145 m | 1144 br                     | 1140 br             |
| 1100                              | 1140                                | 4900 br                    | in to m           |                             |            | 4995 m           | 4286 vbr                    | 1265 br             |
| 12/0 m                            |                                     | 1305 br                    | 1298 m            | 120                         |            | 1293 m           | 1293 br                     | 1200 0.             |
| 1540 11                           |                                     | 1340 m                     | 1541 111          | 1390 br                     |            | 1044 u           | 1 1340 DI                   | 1396 br             |
|                                   |                                     |                            | 1442 in<br>1462 s |                             | _          |                  |                             | 1405 m              |
| 1477 vs                           | 1472 vs                             | 1480 vs                    | 1475 s<br>1482 in | 148                         | 12 vs.     | 1478 vs          | 5 1480 vs                   | 1488 vs.<br>1487 in |
| 1513 s                            | 1506 s                              | 1508 vs                    | 1514 s            | 151                         | 1 s        | 1508 s           | 1508s                       | 1498 s<br>1510 s    |
| 1628 br                           | 1609 m                              | 1621 m                     | 1526 in<br>1623 m | 162                         | 14 m       | 1538 m           | 1523 br<br>1626 m           | 1619 m              |
| 1634 br                           | 1000 111                            | 1632 m                     | 1632 m            | ] .                         | 1634 m     |                  |                             | 1636 m              |
| Hg (SC.F.)                        | Bi(SCrFr),                          | C.F.SSC.F.                 | Cathodic          |                             | Polymer Po |                  | Polymer                     | Polymer             |
|                                   |                                     |                            |                   |                             |            | AI               | ITOIII Mg                   | 1 1000 21           |
| 403 br                            |                                     |                            | 418 bi            |                             | 40         | 3 br             |                             | 414 br              |
| 442 br                            | 442 br                              | 443 br                     |                   |                             | 42         | 8 br             |                             | 436 br              |
| 512 m                             | 513 br                              | 488 br                     | 511 bi            |                             |            |                  | 514 br                      | 512 br              |
| 591 br                            | 587 br                              | 588 br                     | 592 bi            | ŗ                           |            |                  | 590 br                      | 599 m               |
| 749 1                             | 021 III<br>740` m                   | 70/                        | 653 b             | F                           | 65         | 5 vbr            | 652 br                      | 652 vs              |
| 720 in                            | 718  m<br>720  m                    | 724 m<br>728 m             | 718 m             | 1                           |            | - 11C            | 044                         | 734 m               |
| 860 vs                            | 855 vs                              | 856 vs                     | 808 n<br>859 n    | 808 m<br>859 m              |            | 5 m              | 814 VS<br>865 s             | 812 s<br>862 s      |
|                                   | 968 vs                              |                            | 955 v             | 5                           | 89<br>96   | 2 m<br>2 s       | 904 m<br>960 vbr            | 960 vs              |
| 974 vs<br>1019 m                  | 1010 m                              | 973 vs<br>1022 m           | 975 v             | S                           | 98<br>101  | 0s<br>Sin        | 974s<br>1010 in             | 978 vs<br>1022 m    |
| 1031 m<br>1091 s                  | 1025 in<br>1079 s                   | 1089 vs                    | 1092 s            |                             | 109        | 2 vs             | 1094s                       | 1092 s              |
| 1104 in<br>1140 m                 | 1096 in<br>1130 br                  | 1100 in<br>1146 br         |                   |                             | 114        | 9 in 1           | 1145 m                      |                     |
|                                   |                                     | 1250 br                    | 1245 b            | ,                           | 117        | 0 br             | 1181 m                      | 1248 115            |
| 4907 -                            | 4905 La                             | 1271 br                    | 1253 m            | 1                           | 125        | 6 s              | 1470 5                      | 120/ ~~             |
| 1204 br<br>1293 br                | 1280 DI                             | 1203 m                     |                   |                             | 128        | 0                |                             | 1204 10             |
| 1338 m<br>1400 m                  | 1339 m<br>1379 m                    | 1398 m                     |                   |                             | 137        | 5s               |                             | 1385 m              |
|                                   |                                     | -                          |                   |                             | 141<br>145 | 8 m<br>2 m       | 1429 m<br>1468 s            | 1410 m<br>1452 s    |
| 1480 vs                           | 1472 vs                             | 1489 vs                    | 1474 s            | s 146                       |            | 6 s              | 1462 s                      | 1468 s              |
| 1510 vs                           | 1505 VS                             | 1511 VS                    | 1510 \$           |                             | 149        | 55               | 1493 s                      | 1492 m              |
| 1539 in                           | 1602 m                              | 1011 ···                   | 1010 3            | -                           | 100        | 60               | 1014 0                      | 10125               |
| 1634 m                            | 1022 111                            | 1633 m                     | 1635 b            | r<br>r                      | 162        | 4.s<br>6.br      | 1614 s<br>1636 m            | 1614 s<br>1636 s    |

TABLE 2. IR Spectra of Compounds Obtained  $(\nu\,,\,{\rm cm}^{-1})^{\,*}$ 

\* m = medium intensity; br = broad signal; vs = very strong; s = strong; vbr = very broad; in = inflection.

| Compound                                                                                                         | o-Fluoro                                             | m-Fluoro                                             | p-Fluoro                                     |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|--|
| Zn $(C_6F_5S)_2$<br>Cd $(C_6F_5S)_2$<br>Hg $(C_6F_5S)_2$<br>Pb $(C_6F_5S)_2$<br>Bi $(C_6F_5S)_3$<br>CaF_SSC_6F_5 | 55,8<br>55,3<br>55,2<br>55,5<br>52,8<br>52,8<br>56,4 | 88,7<br>86,7<br>87,6<br>87,8<br>85,1<br>85,1<br>85,2 | 87,6<br>83,9<br>83,2<br>85,4<br>83,2<br>73,6 |  |

TABLE 3. <sup>19</sup>F NMR Spectra of Synthesized Metal Pentafluorothiophenolates in Ether Solution, Relative to  $CF_3COOH$  External Standard

<u>Notes.</u> The o-fluorine atoms correspond to signals in the form of a complex triplet and doublet due to splitting on m- and p-fluorine atoms. The signals corresponding to the m-fluorine atoms are a complex triplet and doublet. The signals corresponding to the p-fluorine atoms consist of a triplet with a splitting constant on the m-fluorine atoms amounting to ~ 20 Hz for all compounds.

dryness under vacuum, and the residue was extracted with ether, after which the soluble metal pentafluorothiophenolate was recovered. The insoluble metal pentafluorothiophenolate, together with the perfluoropolythiophenylene, were filtered from the electrolyte and washed with MeCN and ether. The presence of the metal pentafluorothiophenolate and perfluoropolythiophenylene was registered by IR spectroscopy.

When using the glass electrolyzer with a ceramic membrane separating the anode and cathode sections, the anode section was charged with 0.7 g pentafluorothiophenol and 0.05 g tetrabutylammonium tetrafluoroborate in 5 ml of absolute MeCN. The cathode section was filled with the same electrolyte, but without the pentafluorothiophenol. Electrolysis with a current of 50 mA was continued for 1 h, after which the anolyte was evaporated to dryness under vacuum. The residue was extracted with ether, subsequently recovering the soluble metal pentafluorothiolate. In cases in which products insoluble in MeCN were formed, the electrolyte was filtered to remove the precipitate. The precipitate was washed with MeCN and ether.

<sup>19</sup>F NMR spectra in ether solutions were taken in a Perkin–Elmer R-32 spectrometer with an external standard; IR spectra were taken in a UR-20 instrument in KBr tablets.

The elementary analyses and the  ${}^{19}$ F NMR and IR spectra of the compounds that were obtained are given in Tables 1-3.

## CONCLUSIONS

1. Zinc, cadmium, mercury, tin, lead, tallium, copper, nickel, cobalt, and bismuth pentafluorothiophenolates have been synthesized electrochemically by anodic dissolution of the corresponding metal in an electrolyte containing pentafluorothiophenol.

2. Anodic oxidation of pentafluorothiophenol on a platinum electrode leads to the formation of bis(penta-fluorophenyl) disulfide.

## LITERATURE CITED

- 1. H. M. Manasevit and W. J. Simpson, J. Electrochem. Soc., <u>118</u>, 644 (1971).
- 2. H. M. Manasevit and W. J. Simpson, J. Electrochem. Soc., <u>122</u>, 444 (1975).
- 3. P. Claeson, J. Pract. Chem., 15, 193 (1877).
- 4. H. J. Backer and J. Kramer, Rec. Trav. Chim. Pays-Bas, 52, 916 (1933).
- 5. H. J. Backer and J. Kramer, Rec. Trav. Chim. Pays-Bas, 53, 1101 (1934).
- 6. L. Marko and G. Bor, Organomet. Chem. Rev., 3, 162 (1965).
- 7. W. Manchot and H. Gall, Chem. Ber., 60, 2175 (1927).
- 8. W. Manchot and H. Gall, Chem. Ber., <u>60</u>, 2318 (1927).
- 9. F. F. Said and D. G. Tuck, Inorg. Chim. Acta, <u>59</u>, 1 (1982).
- 10. P. Robson, M. Stacey, R. Stephens, and J. C. Tatlow, J. Chem. Soc., 4754 (1960).
- 11. L. J. Belf, M. W. Burton, and G. Fuller, J. Chem. Soc., 3372 (1965).
- 12. R. S. Nyholm, J. F. Skinner, and M. H. B. Stiddard, J. Chem. Soc. A, 38 (1968).

13. W. Beck, K. H. Stetter, S. Trados, and K. E. Schwarzhans, Chem. Ber., 100, 3944 (1967).

14. M. E. Peach, Can. J. Chem., 46, 211 (1968).

15. M. E. Peach, Can. J. Chem., 46, 2699 (1968).

#### ORGANOBORON COMPOUNDS

COMMUNICATION 409. 2-(2-THIENYL)-1-

## BORAADAMANTANE PYRIDINATE

#### B. M. Mikhailov\* and K. L. Cherkasova

UDC 542.91:547.1'127

In the condensation of allylboranes with allenes, derivatives of 3-borabicyclo [3.3.1]nonene are formed with a methyl grouping in position 7 (I) [1], these derivatives being used to obtain 1-boraadamantane compounds [2]. This synthesis is based on the reaction of hydroboranation with subsequent intramolecular cyclization of the resulting diboron compounds, which had been observed previously in a number of acyclic diboron [3] and triboron [4] systems.



It appeared extremely attractive to use this cyclization reaction for the synthesis of functionally substituted 1-boraadamantane derivatives, starting with the corresponding 7-substituted 3-borabicyclo[3.3.1]non-6-ene (II), obtained by the condensation of acetylenic compounds with allylboranes in accordance with the scheme [5]



It should be expected that in the hydroboranation of compounds of the type of (II), the boron atoms will add to the carbon atoms 6 and 7, forming compounds (III) and (IV)



The subsequent fate of (III) and (IV) was determined by the capability of the boron atom for migrating along the carbon chain; in the case of compound (IV), the fate was also determined by its susceptibility to elimination reactions that are characteristic for  $\beta$ -functional derivatives of alkylboranes [6].

The isomerization of (III) to (IV) and migration of the boron atom in (IV) into the side chain to form the borane (V) would lead, through cyclization, to the 2-substituted 1-boraadamantane (VI)

<sup>\*</sup> Deceased.

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1837-1841, August, 1984. Original article submitted June 2, 1983.