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ABSTRACT (75 words maximum) 19 

Nucleoside analog inhibitors (NAI) are an important class of antiviral agents. Although highly 20 

effective, some NAI with anti-hepatitis C virus (HCV) activity can cause toxicity presumably 21 

due to off-target inhibition of host mitochondrial RNA polymerase (POLRMT). The in vitro 22 

nucleotide substrate specificity of POLRMT enzyme was studied in order to explore structure-23 
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activity relationships that can facilitate the identification of non-toxic NAI. These finding have 24 

important implications for all anti-RNA virus NAI development.  25 

TEXT 26 

Nucleoside analog inhibitors (NAI) have been an important component of antiviral therapy for 27 

decades. 2’-Deoxyribonucleoside analogs are regularly used for treatment of viral infections such 28 

as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus 29 

(HSV) (reviewed in (1, 2)). Upon cellular entry, NAIs must be phosphorylated by viral or 30 

cellular kinases into their active 5’-triphosphate (TP) form. NAI-TPs are substrates for the viral 31 

polymerase and their incorporation often results in chain-termination of the growing genome and 32 

subsequent inhibition of virus replication. Recently, sofosbuvir became the first ribonucleoside 33 

analog inhibitor to receive approval for treatment of hepatitis C virus (HCV), an RNA virus (3). 34 

Sofosbuvir is administered as a phoshoramidate prodrug in order to target the liver, improve cell 35 

permeability and bypass the first phosphorylation step by host cell kinases (4, 5). Despite the 36 

excellent safety profile of sofosbuvir, developments of several preceding anti-HCV 37 

ribonucleotide prodrugs were halted due to toxicity (reviewed in (6)). For example, phase II 38 

clinical trials with BMS-986094 (formerly known as INX-189) were terminated after reports of 39 

severe adverse events and one death (7-9). Although the exact mechanism of toxicity is not yet 40 

fully elucidated, it has been shown that treatment with NAI can sometimes lead to off-target 41 

inhibition of host polymerases. For example, off-target inhibition of mitochondrial DNA 42 

polymerase γ has been well documented for zidovudine triphosphate (AZT-TP), the first anti-43 

HIV 2’-deoxyribonucleoside analogs to received FDA approval (10-13). Importantly, it was 44 

recently shown that ribonucleoside analog triphosphates could be substrates for recombinant 45 

human mitochondrial RNA polymerase (POLRMT) (14-16). Unlike the nuclear counterpart 46 
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RNA POL II, POLRMT lacks exonuclease activity and, therefore, incorporation of chain-47 

terminating nucleotides was shown to be irreversible in vitro (14). Consistent with these 48 

observations, Arnold et al. reported that increased POLRMT incorporation of NAI-TPs, as well 49 

as high intracellular NAI-TP levels, correlated positively with reductions in mitochondrial RNA 50 

levels and cytotoxicity (14). Similarly, we recently showed that treatment of Huh-7 cells with 51 

BMS-986094, which generates high levels of 2’-C-methyl-GTP intracellularly, inhibited 52 

mitochondrial RNA transcription (17). Interestingly, treatment with a 2,6-diaminopurine 53 

nucleotide (DAPN) prodrug, an investigational anti-HCV agent that also generates 2’-C-methyl-54 

GTP (18), did not have similar deleterious effects. Lower intracellular NAI-TP accumulation was 55 

proposed to account for the distinct cytotoxic profiles of these compounds (17). 56 

 57 

Considering the importance of safety in developing novel ribonucleoside analogs as inhibitors of 58 

HCV and other RNA viruses, we explored the nucleotide substrate specificity of POLRMT. Here 59 

we report on the in vitro POLRMT incorporation profiles of over forty ribonucleoside analog 5’-60 

triphosphates in order to shed light on structure-activity relationships that lead to the 61 

identification of non-toxic NAI. NAI-TPs that were not substrates for this enzyme were further 62 

examined for antiviral activity. Knowledge gained from this study has important implications not 63 

only for anti-HCV, but all anti-RNA virus antiviral NAI development.  64 

 65 

Incorporation of nucleoside analogs by POLRMT. In order to examine the nucleoside 66 

substrate specificity of POLRMT, we evaluated the incorporation profile of 41 nucleosides with 67 

various chemical modifications on the ribose or base moiety (chemical structures summarized in 68 

Figure 1). As previously described (14, 17), 125 nM of purified POLRMT enzyme was 69 

 on June 7, 2017 by C
O

R
N

E
LL U

N
IV

E
R

S
IT

Y
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


Antimicrob. Agents Chemother. Short communication. AAC00492-17_revised 
 

 4

incubated with 500 nM of 5’-radiolabeled RNA/DNA primer/ template that allowed for the 70 

incorporation of A, C, G, or U nucleotide analogs at position +1, respectively. 100 μM of each 71 

nucleoside 5’-triphosphate analog was incubated with the POLRMT:RNA/DNA complex 72 

containing the appropriate DNA template for two hours at 30 °C. The amount of NAI-TP 73 

incorporation was normalized to the corresponding natural rNTP substrate (Figure 2). We 74 

determined that most modifications on the ribose ring of nucleotide analogs did not completely 75 

neutralize incorporation by POLRMT. As depicted in Figure 2a, addition of 2’-O-methyl, 2’-76 

fluoro, or 2’-amino modifications did not consistently affect POLRMT incorporation for all 77 

nucleotides tested. Consistent with previous findings (14, 15), addition of a C-methyl group at 78 

the 2’ position generally led to notable reductions in incorporation for C, G, and U analogs. 79 

Nucleotides harboring this modification have been examined for their antiviral activity against 80 

HCV (19, 20) and dengue virus (21). Interestingly, the effect of the 2’-C-methyl modification 81 

was especially pronounced for 2’-C-methyl-UTP whose incorporation was reduced to 10 % of 82 

natural UTP, suggesting that U analogs may be particularly vulnerable to chemical modifications 83 

with regards to POLRMT incorporation. This is in agreement with the observations that 2’-C-84 

methyl-2’-F-UTP, the active metabolite of sofosbuvir, is an exceedingly poor substrate for 85 

PORLMT (Figure 2a). Under the conditions tested, we found 3’- or 2’-deoxynucleoside 86 

triphosphates were generally good substrates for POLRMT (with the exception of 3’-dCTP) 87 

(Figure 2b). However, the simultaneous removal of both hydroxyl groups (2’,3’-ddNTPs) 88 

completely abrogated incorporation, suggesting that the presence of at least one OH group is 89 

essential for NAI-TP incorporation. Our data are consistent with previous observations that little 90 

discrimination exists against sugar-modified nucleotides (22). The observed promiscuity of 91 

POLRMT has implications for fidelity of this enzyme during mitochondrial RNA transcription. 92 
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 93 

Considering that 2'-deoxynucleoside triphosphate analogs were substrates for POLRMT, we next 94 

asked whether dNAI-TPs active against DNA viruses or retroviruses might also be substrates for 95 

POLRMT (see Figure 1b for chemical structures). As expected, DAPD-TP, DXG-TP, AZT-TP 96 

and ETV-TP were not incorporated by POLRMT. Surprisingly, we found 30% and 36% 97 

incorporation for 3TC-TP and GCV-TP, respectively at 100 µM of the NTP (Figure 2c). 98 

Although extensive literature exists on the impact of dNAI-TPs on mitochondrial DNA 99 

synthesis, it is worth noting that little information is available on the role of these compounds 100 

with regards to interference with mitochondrial RNA transcription in cells.  101 

In our search for nucleoside analogs that are not substrates for POLRMT, but active against the 102 

viral RNA polymerase of HCV, we next investigated the incorporation profiles of nucleoside 103 

analog 5’-triphosphates harboring various base moiety modifications (Figure 1c). Of the nine 104 

compounds tested, we found that the majority of modifications at positions 4, 5, 6 and 8 of 105 

purines and pyrimidines did not significantly reduced incorporation by POLRMT (Figure 2c). 106 

Similarly, nucleoside analog triphosphates containing bulky modifications (such as 8-azido-ATP, 107 

4-thio-UTP and 5-bromo-UTP) were readily incorporated by POLRMT. The combined presence 108 

of 2’-C-methyl and 2-fluoro modifications resulted poor POLRMT incorporation (12% of the 109 

natural ATP substrate). We have previously reported on the anti-HCV activity of this compound 110 

(23), where phosphoramidate prodrug of 2’-C-methyl-2-fluoro-ATP was found to inhibit HCV 111 

replicons with submicromolar activity.  112 

The addition of NHOH chemical group on position 4 of pyrimidine ring (4-N-OH-CTP) was also 113 

observed to reduce incorporation by PORLMT to 50% of CTP (Figure 2c). Addition of 2’-C-114 
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methyl group further reduced incorporation to 20% of CTP. Both 4-N-OH-CTP and 2’-C-115 

methyl-4-N-OH-CTP demonstrated anti-HCV activity in cell culture (24, 25). 116 

Incorporation of N1-methyl-GTP by POLRMT. We identified N1-methyl-GTP as a 117 

nucleoside analog 5’-triphosphate with minimal incorporation by POLRMT. Considering that the 118 

addition of the N1-methyl group on the base moiety reduced POLRMT incorporation to 10% of 119 

the natural GTP substrate (Figure 2c), N1-methyl-GTP was selected for further analysis with 120 

regards to incorporation by viral NS5B RNA polymerase. NS5B incorporation assays were 121 

performed as previously described (17). NS5B: RNA/RNA complexes were incubated with 122 

increasing concentrations of GTP or N1-methyl-GTP. Single nucleotide incorporation was 123 

observed over time and visualized on a denaturing polyacrylamide gel (Figure 3) where the 5’-124 

radiolabeled 9mer primer was extended to a 10mer product. As expected, natural GTP substrate 125 

was rapidly incorporated with an apparent dissociation constant (Kd,app) value of 4.1 ± 1.6 μM 126 

(Figure 3a). Conversely, at least 125 μM of N1-methyl-GTP was required for 50 % incorporation 127 

by HCV NS5B enzyme (Kd,app > 100 μM), suggesting compromised incorporation when 128 

compared to natural GTP (Figure 3b).  129 

We next asked whether RNA extension could occur after N1-methyl-GTP incorporation by 130 

NS5B enzyme. NAI-TP incorporation was assessed in the presence of 10 μM CTP, ATP and 131 

UTP and increasing amounts of N1-methyl-GTP (Figure 4a). We found that as N1-methyl-GTP 132 

levels increased, an increase in full-length 20mer product was observed suggesting that 133 

nucleotide extension can occur following N1-methyl-GTP incorporation (Figure 4b, left panel). 134 

As expected full-length RNA synthesis was more readily observed with low levels of GTP 135 

(Figure 4b, right panel). Overall, these data suggested that although N1-methyl-GTP was a poor 136 

substrate for NS5B enzyme, its incorporation does not result in RNA chain-termination. We next 137 
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asked whether N1-methyl-GTP could inhibit RNA polymerization in the presence of competing 138 

GTP. We found that when 1 μM of GTP was present in addition to 10 μM of CTP, ATP and 139 

UTP, N1-methyl-GTP had no effect on full-length RNA synthesis (Figure 4c). This is in contrast 140 

to control compound 2’-C-methyl-GTP, which inhibited RNA synthesis with an IC50 value of 3.3 141 

± 0.5 μM (Figure 4c). Finally, we asked whether N1-methyl-GTP might inhibit viral genome 142 

synthesis in a manner that may not be detectable in our in vitro assay. To address this issue, we 143 

chemically synthesized a phosphoramidate prodrug of N1-methyl-GTP for cell culture testing 144 

(Scheme 1). We observed no inhibition when up to 200 μM of N1-methyl-G-phosphoramidate 145 

prodrug was incubated with HCV genotype 1b replicon cells (see (24) for experimental 146 

methods). Further experiments suggested that this prodrug is not efficiently triphosphorylated 147 

intracellularly (data not shown). Together, these data suggest that although N1-methyl-GTP may 148 

be a safe NAI-TP with regards to off-target incorporation by human POLRMT, it will likely not 149 

be effective as an anti-HCV agent. We also did not detect any antiviral activity against 150 

chikungunya, influenza A and respiratory syncytial virus when tested up to 100 µM. It remains 151 

to be determined whether this compound can be of interest as an antiviral agent for other RNA 152 

viruses.   153 

In conclusion, in this report we examined the in vitro nucleotide substrate specificity of 154 

POLRMT. We found to our surprise that the POLRMT active site is relatively tolerant of 155 

incorporating most of the nucleoside analog 5’-triphosphates tested. Several anti-HCV NAI-TPs 156 

were identified to be poor substrates for POLRMT. In conclusion, the information on NAI-TP 157 

incorporation profile of POLRMT described herein sheds light on the biochemical properties of 158 

this enzyme active site and inform future ribonucleotide analog drug design for all RNA viruses.  159 

 160 
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 277 

FIG 1. Chemical structures of NAI-TPs. A) Structures of NAI-TPs with modifications on the 278 

ribose moiety. Compounds are grouped according to base moiety. B) Chemical structures dNAI-279 

TPs with anti-HIV, anti-HBV or anti-HSV activity. C) Structures of ribonucleoside analog 5’-280 

triphosphates with modifications on the base moiety.  281 
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FIG 2. Nucleoside analog 5’-triphosphate incorporation by POLRMT. A) Nucleoside analog 283 

triphosphates with modifications at the 2’-position of the ribose moiety were assessed for 284 

incorporation by POLRMT. Incorporation reactions were allowed to proceed for 2 h in the 285 

presence of 100 μM of each substrate. Percentage incorporation for each nucleoside analog 286 

triphosphate was normalized to that of the corresponding natural nucleotide (ATP, CTP, GTP, or 287 

UTP) substrate. B) POLRMT incorporation of 2’-deoxyribonucleoside analogs and NAI-TPs 288 

with anti-HBV, anti-HIV or anti-HSV activity was assessed as described above. C) POLRMT 289 

incorporation was assessed for ribonucleoside analog 5’-triphosphates with modifications on the 290 

base moiety. Error bars represent S.D. values for two to three separate experiments.  291 
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 303 

FIG 3. Incorporation profile of N1-methyl-GTP. A) Increasing concentrations of GTP (0.7 304 

μM to 180 μM) were incubated with a pre-formed NS5B: RNA/RNA complexes and nucleotide 305 

extension was measured over time. The extended 10mer RNA product was visualized on a 20% 306 

denaturing acrylamide gel. Rates of incorporation at various nucleotide concentrations were 307 

plotted as described previously in order to obtain apparent dissociation constant (Kd,app) value of 308 

4.1 ± 1.6 μM for GTP (17). B) Increasing concentrations of N1-methyl-GTP (15.6 μM to 500 309 

μM) were incubated with the preformed NS5B:RNA/RNA complex as described above. Kd,app 310 

value for N1-methyl-GTP was estimated to be > 100 μM. 311 
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 312 

FIG 4. Effect of N1-methyl-GTP incorporation on NS5B-mediated RNA extension. A) 313 

Increasing concentrations of N1-methyl-GTP were incubated with NS5B enzyme, 5’-314 

radiolabeled GG primer, and a 20mer RNA template in the presence of 10 μM ATP, CTP, and 315 

UTP. RNA synthesis was allowed to proceed for 2 h at 30°C. In the absence of N1-methyl-GTP 316 

(lane 0), a strong pausing site was observed at position 9 while small amounts of 20mer full-317 

length RNA product were accumulated as a result of nucleotide misincorporation. Increasing N1-318 

methyl-GTP concentrations correlated with the appearance of a 10mer band (site of G 319 

incorporation) and full-length 20mer product. B) Amount of 20mer product accumulation was 320 

plotted as a function of N1-methyl-GTP concentration (left). Parallel experiment with increasing 321 

concentrations of GTP was also plotted (right). C) RNA synthesis was monitored as described 322 

above, with the addition of 1 μM GTP in the presence of increasing concentrations of N1-323 

methyl-GTP (left) and control inhibitor 2’-C-methyl-GTP (right). No inhibition of RNA 324 
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synthesis was observed with up to 1,000 μM of N1-methyl-GTP while 2’-C-methyl-GTP 325 

inhibited RNA synthesis with an IC50 value of 3.3 ± 0.5 μM (average of two separate 326 

experiments ±S.D.). 327 

 328 

 329 

 330 

 331 

Scheme 1. Chemical synthesis of N1-methyl-G-phosphoramidate prodrug. (a) p-332 

Toluenesulfonic acid, 2,2-dimethoxypropane, acetone, rt, overnight, 93%; (b) NaH, MeI, DMSO, 333 

rt, 89.7%; (c) phosphorochloridate, N-methylimidazole, THF/CH3CN, rt, 3 h, 90.7%; (d) 85% 334 

TFA, rt, 1 h, 86%. 335 

 336 
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