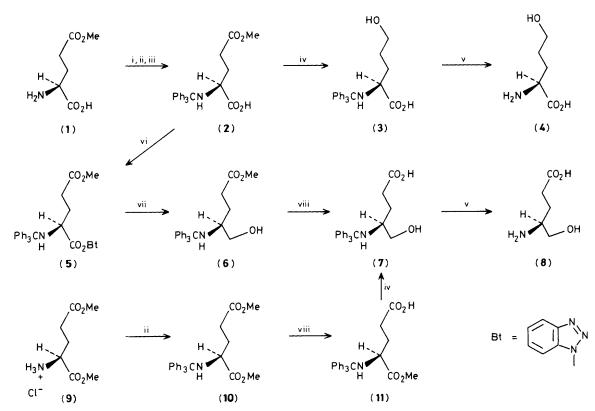
View Article Online / Journal Homepage / Table of Contents for this issue

Simple Syntheses of (S)-2- and 4-Amino-5-hydroxypentanoic Acids†

Kleomenis Barlos,*a Petros Mamos,^b Dionysios Papaioannou,^a and Stella Patrianakou^a

Department of Chemistry and b Department of Medicine, University of Patras, Patras, Greece


The title compounds were efficiently prepared by selective reductions of α - and γ -methyl (*S*)-*N*-tritylglutamates with LiAlH₄

(S)-2-Amino-5-hydroxypentanoic acid (L- δ -hydroxynorvaline) (4), the next higher homologue of homoserine, and (S)-4-amino-5-hydroxypentanoic acid (8) are competitive inhibitors of γ -cystathionase¹ and γ -aminobutyric acid aminotransferase,² respectively. Furthermore, the amino acid (4) acts as the biological precursor of the polyoxins (nucleoside peptide antibiotics), in which its whole carbon skeleton is found intact,³ and it is also incorporated into the oxazolidine segment of clavulanic acid,⁴ a potent inhibitor of bacterial β -lactamases.

Both compounds (4) and (8) have been prepared previously in low overall yields by rather lengthy and tedious or wasteful synthetic routes.^{2a,5} We now report exceptionally simple syntheses which provide (4) and (8) in good overall yields and excellent purity from commercially available γ -methyl (S)- glutamate (1) or dimethyl (S)-glutamate hydrochloride (9). In all the synthetic transformations the bulky triphenylmethyl (trityl) group was chosen for α -amino protection for the following reasons: (a) it is easily introduced, and removed by mild acid treatment in excellent yields,⁶ (b) it completely suppresses reduction of the α -carboxy function of amino acids by LiAlH₄,^{7b} (c) it offers excellent racemisation resistance even in the case of strongly activated chiral amino acid derivatives,⁸ and (d) in contrast to protecting groups of the urethane type,^{7a} it is compatible with complex metal hydrides.^{7b}

Our synthetic route to (4) initially involves the tritylation of (1) by the trimethylsilyl ester procedure.^{6a} The product (2) obtained as the diethylammonium (DEA) salt {m.p. 155—156 °C, $[\alpha]_D^{25} + 13.7^\circ$ (*c* 1, MeOH)} in 95% yield, was further reduced as such with LiAlH₄ in tetrahydrofuran at 0 °C to afford *N*-trityl- δ -hydroxynorvaline (3), also isolated as the corresponding DEA salt {m.p. 134—135 °C, $[\alpha]_D^{25} - 14.3^\circ$ (*c* 2, MeOH)}, in 87% yield. The reduction proceeds absolutely selectively at the ester function as evidenced by the total

⁺ All optically active amino acid derivatives referred to in this communication are of the S-configuration. New compounds gave analytical and spectroscopic data in agreement with the proposed structures.

Scheme 1. Reagents: i, Me_3SiCl/Et_3N ; ii, Ph_3CCl/Et_3N ; iii, MeOH; iv, $LiAlH_4/THF$; v, $AcOH-H_2O$; vi, 1-HOBt, dicyclohexylcarbodiimide; vii, $NaBH_4/(MeO[CH_2]_2)_2O$, 0 °C; viii, 2M NaOH/MeOH, room temp.

absence of by-products shown by h.p.l.c. Finally, detritylation with aqueous 95% acetic acid at ambient temperature gave, after recrystallisation from aqueous ethanol, the product (4) {m.p. 231.5 °C, $[\alpha]_D^{25}$ +22.6° (*c* 2, 0.5M HCl) (lit.^{5a} m.p. 220–220.5 °C), $[\alpha]_D^{25}$ +28.2 (*c* 1.9, 6M HCl) } in 82% yield.

The 4-amino isomer (8) {m.p. 167–168 °C, $[\alpha]_D^{25}$ +24.2° (c 2, H₂O) (lit., ^{2a} m.p. 147–148 °C, no figure for $[\alpha]_D^{25}$) was prepared, in 72% overall yield based on (9), in an analogous manner by reduction of α -methyl (S)-N-tritylglutamate (11) followed by detritylation. As depicted in Scheme 1, (11) was prepared by tritylation of (9) followed by selective saponification. Alternatively, the reduction product (7) was obtained in 77% overall yield based on (2) by converting⁹ (2) into the corresponding oily benzotriazolyl derivative (5), followed by selective reduction with NaBH4 and saponification of the resulting methyl 4-tritylamino-5-hydroxypentanoate (6). Neither of the reductions leading to (7) was as selective as that of (3), as evidenced by minor less polar by-products (h.p.l.c.) accompanying its formation. However these by-products are easily separated during crystallisation of the corresponding DEA salt of (7) {m.p. $122 \,^{\circ}C$, $[\alpha]_{D^{25}} + 42.7^{\circ}$ (c 1, MeOH)}.

We thank the Agricultural Bank of Greece and the Ministry of Research and Technology for support of this work.

Received, 11th June 1987; Com. 811

References

- 1 W. Washtien, A. J. L. Cooper, and R. H. Abeles, *Biochemistry*, 1977, 16, 460.
- 2 R. B. Silverman and M. A. Levy, (a) J. Org. Chem., 1980, 45, 815;
 (b) J. Biol. Chem., 1981, 256, 11565.
- 3 S. Funayama and K. Isono, Biochemistry, 1977, 16, 3121.
- 4 C. A. Townsend and M. F. Ho, J. Am. Chem. Soc., 1985, 107, 1065; S. W. Elson, in 'Recent Advances in the Chemistry of β-Lactam Antibiotics,' ed. G. I. Gregory, Royal Society of Chemistry, London, 1981, p. 142; S. W. Elson, R. S. Oliver, B. W. Bycroft, and E. A. Faruk, J. Antibiot., 1982, 35, 81.
- Bycroft, and E. A. Faruk, J. Antibiot., 1982, 35, 81.
 5 (a) M. Goodman and A. M. Felix, *Biochemistry*, 1964, 3, 1529; (b) J. P. Greenstein, J. Biol. Chem., 1952, 194, 455; (c) L. Berlinquet and R. Gaudry, *ibid.*, p. 765; (d) R. Gaudry, *Can. J. Chem.*, 1951, 29, 544; (e) M. Pleininger, *Chem. Ber.*, 1950, 83, 271.
- 6 (a) K. Barlos, D. Papaioannou, and D. Theodoropoulos, J. Org. Chem., 1982, 47, 1327; (b) E. Wünsch, in 'Methoden der organischen Chemie, Synthese von Peptiden I,' Houben-Weyl-Müller, 4. Aufl., Bd. XV/1, Thieme, Stuttgart, 1974.
- 7 (a) C. F. Stanfield, J. E. Parker, and P. Kanellis, J. Org. Chem., 1981, 46, 4799; (b) K. Barlos, D. Papaioannou, S. Patrianakou, and T. Tsegenidis, Liebigs Ann. Chem., 1986, 952.
- 8 K. Barlos, D. Papaioannou, S. Patrianakou, and T. Tsegenidis, Liebigs Ann. Chem., 1986, 1950.
- 9 K. Barlos, D. Papaioannou, and D. Theodoropoulos, Int. J. Pept. Protein Res., 1984, 23, 300.