K₂UCl₅, Rb₂UCl₅, UCl₃ AND A COMPARISON WITH ANALOGOUS RARE EARTH CHLORIDES*

GERD MEYER, H.-CHR. GAEBELL and R. HOPPE

Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, 6300 Giessen (F.R.G.) (Received January 27, 1983)

Summary

 K_2UCl_5 and Rb_2UCl_5 crystallize isotypically with K_2PrCl_5 (orthorhombic structure; space group, *Pnma*; Z = 4). Monocapped trigonal prisms $[UCl_7]$ are connected via two common edges to chains $[UCl_5]^{2-}$ in the [010] direction. The lattice constants and molar volumes suggest that the uranium chlorides should be compared with the analogous cerium compounds. The crystal structure of UCl_3 was refined from single-crystal data.

1. Introduction

As the rare earth trichlorides RECl₃ (RE \equiv La-Gd) [1] have the UCl₃-type structure [2-4], the KCl-UCl₃ and RbCl-UCl₃ systems are expected to behave in a similar manner to the analogous alkali metal chloride-rare earth metal trichloride (ACl-RECl₃) systems. According to phase diagram determinations [5] and X-ray structural investigations [6] only the formula types ARE₂Cl₇, A₃RE₂Cl₉, A₂RECl₅ and A₃RECl₆ have been observed, although not in every system.

Compounds of the A_2RECl_5 type were obtained with $A \equiv K$ and $RE \equiv La-Dy$, $A \equiv Rb$ and $RE \equiv La-Eu$ [7], and with the heavier rare earths with $A \equiv Rb$ and $RE \equiv Er-Lu$, $A \equiv Cs$ and $RE \equiv Dy-Lu$ [8]. Both the KCl-UCl₃ and RbCl-UCl₃ systems contain compounds of the A_2UCl_5 type [9, 10]. X-ray powder data have apparently been recorded only once for K_2UCl_5 and Rb_2UCl_5 [10] and were indexed using an orthorhombic unit cell (Tl_2AlF_5 type). The magnetic and spectroscopic behaviour of these compounds has also been investigated [11].

^{*} Paper presented at the Sixteenth Rare Earth Research Conference, The Florida State University, Tallahassee, FL, U.S.A., April 18–21, 1983.

2. Experimental details

 UCl_3 was prepared as follows. Uranium metal filings (Zinsser, Frankfurt am Main) reacted with hydrogen at 250 °C to yield UH₃ which was dehydrogenated at 330 °C in a stream of dry argon. The finely divided powder reacted with HCl gas at 250 °C to give a mixture of UCl₃ and UCl₄. Chemical transport with iodine (525-400 °C) gave single crystals of both UCl₃ (deep red) and UCl₄ (green).

 K_2UCl_5 and Rb_2UCl_5 were prepared as follows. 2:1 molar mixtures of KCl or RbCl and UCl₃ were heated together in Pyrex tubes under dry argon at 400 °C for 2 days. Purple–violet hygroscopic powders were obtained.

Guinier patterns were obtained using a Simon camera [12] (model FR 553; Enraf-Nonius, Delft) and Cu K α_1 radiation. They were measured and the lattice constants were computed [13] for K₂UCl₅ and Rb₂UCl₅. Low temperature quartz (a = 491.323 pm, c = 540.485 pm [14]) was used for calibration.

Single crystals of UCl₃ were mounted under dry argon in glass capillaries and their quality was checked using Weissenberg photographs. The best crystal was transferred to a four-circle diffractometer (Philips, PW 1100) for data collection (Mo K α radiation; ω scan; scan speed, 0.04° s⁻¹; scan width, 1.2°). The data were treated in the usual way: an *R* factor of 9.1% was finally obtained for 139 $|F_0|$ with $|F_0| > 2.5\sigma|F_0|$ [15].

3. Results and discussion

Our film readings of Guinier patterns of K_2UCl_5 and Rb_2UCl_5 are essentially identical with published powder data [10] (see Table 1 for the example of K_2UCl_5). However, the assumption that both chlorides crystallize in the Tl_2AlF_5 type [16] is not only unlikely but, furthermore, cannot interpret the powder patterns.

By analogy with our results for K_2RECl_5 (RE = La-Dy) and Rb₂RECl₅ (RE = La-Eu) compounds [7], the powder patterns of K_2UCl_5 and Rb₂UCl₅ can be indexed using the following orthorhombic unit cells: K_2UCl_5 , a = 1271.9(2)pm, b = 880.16(9) pm, c = 799.53(9) pm; Rb₂UCl₅, a = 1313.6(4) pm, b = 898.8(3)pm, c = 820.3(3) pm. Therefore both chlorides crystallize isotypically with K_2PrCl_5 whose crystal structure has recently been refined from single-crystal data [7] (space group, *Pnma*; Z = 4). The observed relative intensities are in good agreement with those calculated for this model (see Table 1).

 U^{3+} has seven nearest neighbours in both K_2UCl_5 and Rb_2UCl_5 , and the coordination polyhedron can be described as a monocapped trigonal prism. The distances were calculated using the atomic coordinates of K_2PrCl_5 and are included in Fig. 1 where the connection of the prisms $[UCl_7]$ to the chains $[UCl_5]$ via two opposite common edges according to $\frac{1}{\infty}[UCl_{3/1}^*Cl_{4/2}^*]$ is shown (where t denotes terminal and e denotes edge sharing). The $U^{3+}-U^{3+}$ distance through the common edge is 457 pm and this connection is presumably responsible for the reported antiferromagnetism [11] of both compounds. This assumption is confirmed by our preliminary results.

hkl	$4\theta_{o}(\mathrm{deg})$	I _o ª	I _c	$\sin^2\theta_{o}$	$\sin^2\theta_{\rm c}$	d _o ^b (pm)	<i>d</i> [10] (pm)
101	26.03	vs	1000	0.01248	0.01295	679.8	678
200	27.77	m	569	0.01461	0.01467	637.2	632
011	29.92	w	289	0.01694	0.01694	591.8	
020	40.33	w	214	0.03065	0.03063	440.0	
211	40.88	w	242	0.03147	0.03161	434.2	433
002	44.43	vw	132	0.03712	0.03712	399.8	403
301	47.44	w	364	0.04223	0.04229	374.8	374
121	48.16	m	577	0.04352	0.04358	369.2	368
220	49.15	w	348	0.04529	0.04530	361.9	361
112	50.85	w	236	0.04842	0.04845	350.0	350
202	52.56	vw	74	0.05168	0.05179	338.8	338
221	54.00	vw	39	0.05449	0.05458	330.0	
400	56.04	vw	118	0.05861	0.05868	318.2	318
401	60.42	vw	127	0.06791	0.06796	295.6	296
302	61.44	vw	61	0.07015	0.07013	290.8	290
122	61.98	vw	159	0.07136	0.07143	288.3	288
411	63.83	vw	174	0.07558	0.07562	280.2	280
312	64.79	w	203	0.07781	0.07779	276.1	
222	66.70	w	358	0.08234	0.08243	268.4	268
103	68.69	vw	31	0.08716	0.08720	260.9	
420	69.54	w	356	0.08927	0.08931	257.8	257.5
013	70.30	vw	170	0.09118	0.09119	255.1	
231	70.97	vw	113	0.09286	0.09288	252.8	
501	74.08	vw	42	0.10089	0.10096	242.5	
213	75.93	m	392	0.10581	0.10586	236.8	236.6

TABLE 1 The first 25 lines of the Guinier pattern of K_2UCl_5 and a comparison with d values from ref. 10.

*vs, very strong; m, medium; w, weak; vw, very weak.

^b Calculated from $\sin^2\theta_{o}$.

Fig. 1. The $[UCl_5]^{2-}$ chain $(\frac{1}{\infty}[UCl_{3/1}^{t}Cl_{4/2}^{t}]^{2-})$ in K_2UCl_5 . The distances are in picometres.

A comparison of the Madelung parts of the lattice energy (MAPLE) [17] of K_2UCl_5 and the sum of the respective values of the binary components KCl (twice) and UCl₃ supports the results derived from the powder data (Table 2). The results of the refinement of the crystal structure of UCl₃ were used to calculate its MAPLE and the values are compared with previous results in Table 3.

	Lattice energy (kcal mol ⁻	Lattice energy (kcal mol ⁻¹)			
	Binary	Ternary			
K ⁺	92.2 (2×)	103.9 (2×)			
U ³⁺	740.3	720.8			
Cl-	92.2 *	91.4			
CI-	92.2	99.3			
Cl-	103.7 ^ь	94.4			
Cl-	103.7 (2×)	108.9 (2×)			
Σ	1420.2	$1431.5 (\varDelta = 0.8\%)$			

TABLE 2 The Madelung parts of the lattice energy of K_2UCl_5

• From KCl.

^b From UCl₃; this association is arbitrary.

TABLE 3

A comparison of the results of the structure analyses of UCl_3 ($P6_3/m$; Z = 2; uranium in 2c; chlorine in 6h)

	Ref. 2	Ref. 4ª	This work
a (pm)	744.3	744.0	744.5
c (pm)	431.2	432.1	431.4
x(Cl)	0.375	0.3858(4)	0.3871(12)
v(Cl)	0.292	0.3009(4)	0.3001(13)
d(U-Cl) (pm)	296 (9×)	293.8 (3×)	291.8 (6×)
		293.1 (6×)	294.1 (3×)

^a Neutron diffraction profile analysis.

Fig. 2. The molar volumes of MCl₃ (M \equiv La-Nd, U) and the molar volumes derived from the ternary chlorides K₂MCl₅ and Rb₂MCl₅ by subtraction of twice the molar volumes of KCl and RbCl respectively. The molar volumes V_m are plotted against their reduction ΔV_m in the ternary chlorides expressed as a percentage.

The lattice constants and molar volumes suggest that K_2UCl_5 and Rb_2UCl_5 should be compared with the analogous cerium chlorides whose lattice constants are [7] as follows: K_2CeCl_5 , a = 1271.7(3) pm, b = 881.5(2) pm, c = 799.5(2) pm; Rb_2CeCl_5 , a = 1312.2(3) pm, b = 898.5(2) pm, c = 819.5(2) pm. Figure 2 gives a comparison of the molar volumes of the binary trichlorides MCl_3 ($M \equiv La-Nd$, U) with the corresponding values obtained using the equation

 $V_{\rm m}({\rm MCl}_3) = V_{\rm m}({\rm A}_2{\rm MCl}_5) - 2V_{\rm m}({\rm ACl})$

The molar volumes V_m are reduced by about 4% (K₂MCl₅) and 5% (Rb₂MCl₅) respectively when compared with V_m of the binary chlorides. This reduction is plotted in Fig. 2 against the respective molar volumes.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, and the Verband der Chemischen Industrie, Frankfurt am Main.

References

- D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc., 76 (1954) 5237.
 C. Au and R. Au, Acta Crystallogr., 23 (1967) 1112.
 B. Morosin, J. Chem. Phys., 49 (1968) 3007.
- 2 W. H. Zachariasen, Acta Crystallogr., 1 (1948) 265.
- 3 D. Brown and J. Edwards, J. Chem. Soc., Dalton Trans., (1972) 1757.
- 4 J. C. Taylor and P. W. Wilson, Acta Crystallogr., Sect. B, 30 (1974) 2803.
- 5 Gmelin Handbuch der Anorganischen Chemie, System 39: Sc, Y, La-Lu, Selten-Erdelemente, Part C5, Springer, Berlin, 1977, Chap. 17.
 R. Blachnik and D. Selle, Z. Anorg. Allg. Chem., 454 (1979) 90.
- G. Meyer, Prog. Solid State Chem., 14 (1982) 141.
 G. Meyer, in G. J. McCarthy, H. B. Silber and J. J. Rhyne (eds.), The Rare Earths in Modern Science and Technology, Vol. 3, Plenum, New York, 1982, p. 317.
- 7 G. Meyer and E. Hüttl, Z. Anorg. Allg. Chem., 497 (1983) 191.
- 8 G. Meyer, J. Soose and A. Moritz, unpublished results, 1981.
- 9 C. J. Barton, R. J. Sheil, A. B. Wilkerson and W. R. Grimes, in R. E. Thoma (ed.), Phase Diagrams of Nuclear Reactor Materials, Rep. ORNL-2548, 1959, p. 136 (Oak Ridge National Laboratory, Oak Ridge, TN). Gmelin Handbuch der Anorganischen Chemie, System 55, Vol. 9, Suppl., Springer, Berlin, 1979.
- 10 J. G. Suglobova and D. Kierkast, Koord. Khim., 7 (1981) 97.
- 11 J. Drozdzynski and D. Miernik, Inorg. Chim. Acta, 30 (1978) 185.
- 12 A. Simon, J. Appl. Crystallogr., 3 (1970) 11.
- 13 J. Soose and G. Meyer, SOS: Programme zur Auswertung von Guinier-Aufnahmen, Justus-Liebig-Universität, Giessen, 1980.
- 14 A. S. Cooper, Acta Crystallogr., 15 (1962) 578.
- 15 G. M. Sheldrick, SHEL-X 76: A program for crystal structure determination, University of Cambridge, 1976.
- 16 C. Brosset, Z. Anorg. Allg. Chem., 235 (1938) 139.
- 17 R. Hoppe, Adv. Fluorine Chem., 6 (1970) 387.