Dalton Transactions

COMMUNICATION

RSCPublishing

View Article Online View Journal | View Issue

Cite this: Dalton Trans., 2013, 42, 14673

Received 5th June 2013, Accepted 11th July 2013 DOI: 10.1039/c3dt51497h

www.rsc.org/dalton

Formation and structural characterization of a five-membered zirconacycloallenoid[†][‡]

Georg Bender, Gerald Kehr, Constantin G. Daniliuc,§ Birgit Wibbeling§ and Gerhard Erker*

A conjugated enyne reacts with *in situ* generated zirconocene to yield a five membered zirconacycloallenoid that was characterized by X-ray diffraction.

Zirconocene complexes of conjugated dienes, enynes or diynes strongly favour metallacyclic five-membered ring structures over their conventional π -complex resonance forms, which indicates a very pronounced backbonding component for these Group 4 bent metallocene complexes.¹ Rosenthal's metallacyclocumulenes² (1) and Suzuki's metallacycloalkynes³ (3) are very typical examples. Recently, we⁴ and shortly thereafter Suzuki⁵ had described the formation and structural characterization of two substituted examples of the zirconacycloallenoids (2) that were taking a position in between complexes 1 and 3 in this unique general class of compounds⁶ (Scheme 1).

Conjugated diene zirconocenes can be synthesised by reacting the respective substituted butadiene magnesium reagents with, e.g., Cp₂ZrCl₂⁷ or by reductive coupling of bis(alkenyl)zirconocenes.8 A convenient method is the trapping of a conjugated diene ligand by in situ generated zirconocene.^{1,9} Both the latter reaction types had also been used to prepare 'Rosenthal-zirconacyclocumulenes' as well.² Suzuki and subsequently we had prepared examples of the zirconacycloallenoids by generating zirconocene by variants of the Negishi method¹⁰ in the presence of conjugated enynes,¹¹ and we had used that to carry out typical subsequent reactions.¹² However, to the best of our knowledge, a simple derivative of the general complex class of the zirconacycloallenoids (2) had so far not been characterized by X-ray diffraction so that an ample structural description of these conceptual links between the well characterized metallacyclocumulenes (1) and the

metallacycloalkynes (3) was still missing. We have now prepared a suitable example of a five-membered zirconacycloallenoid bearing only simple substituents and have characterized it by X-ray diffraction. We also carried out a few reactions of this compound (actually with an unusual outcome) that will be described in this paper.

We treated Cp₂ZrCl₂ with two molar equivalents of *n*-butylmagnesium chloride in the presence of the enyne **4** (5.5:1 *trans-cis*-mixture, one equiv.). After keeping the mixture for 1 h at 60 °C, workup eventually gave compound **2c** as yelloworange crystals in 58% yield.¶

The X-ray crystal structure analysis shows that the enyne 4 has become η^4 -coordinated to the *in situ* generated zirconocene unit. It shows a central unit that is probably best described as a resonance hybrid between a Cp₂Zr(enyne) π -complex and a five-membered metallacycloallene (see Scheme 2). The bonds between the zirconium atom and the pair of former acetylene carbon atoms are short (Zr1–C1 2.304(8) Å, Zr1–C2 2.321(7) Å). The Zr–C(olefin) linkages are also rather short (Zr1–C3 2.446(8) Å, Zr1–C4 2.461(7) Å) but markedly longer than the former pair of Zr–C bonds (for comparison, the Zr–C(Cp) bond lengths of compound **2c** are in a range between 2.488(9) Å and 2.55(2) Å). The C1–C2 bond is still short at 1.269(10) Å, while the C3–C4 bond is slightly longer (1.415(11) Å), both reminding us of their acetylenic and

Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster, Germany. E-mail: erker@uni-muenster.de

[†]Dedicated to Professor Carl Krüger on the occasion of his 80th birthday.

[‡]Electronic supplementary information (ESI) available: Experimental and analytical details. CCDC 938715–938717. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3dt51497h §X-ray crystal structure analyses.

Fig. 1 A view of the molecular structure of the zirconacycloallenoid **2c** (thermal ellipsoids are shown with 30% probability).

olefinic origin, respectively. However, their connecting bond is remarkably short at an intermediate value between the former C–C pair at C2–C3 1.383(11) Å, as one would probably have expected it for a structure featuring some allenoid character (see Fig. 1). The central framework of the zirconacycloallenoid **2c** is non-planar.^{4,5} It features a *trans*-arrangement of the substituents at the former carbon–carbon double bond (C3–C4): θ = C1–C2–C3–C4 –68.2(2)°, θ = C2–C3–C4–C21 –177.6(7)° (angles C2–C3–C4 121.7(8)°, C3–C4–C21 123.8(7)°, Zr1–C4–C21 133.9(5)°). The former acetylene moiety features a marked transoid distortion (θ = C3–C2–C1–C5 –173.1(13)°, angles C3–C2–C1 150.5(8)°, C2–C1–C5 132.8(7)°, Zr1–C1–C5 151.4(6)°).

In solution (C₆D₆), complex **2c** shows characteristic ¹³C NMR resonances of the framework at δ 162.5 (C1), 116.7 (C2), 92.8 (C3) and 68.5 (C4). The corresponding 4-H ¹H NMR signal was observed at δ 2.72 and the adjacent 3-H signal at δ 5.04 (AX, ³*J*_{HH} = 13.9 Hz). These values indicate a marked participation of the metallacyclic allenoid resonance structure as it is often observed for such zirconocene complexes. The Cp NMR features of complex **2c** occur at δ 5.39 and 4.87 (¹H, each 5H; ¹³C: δ 104.8, 102.7) and the ¹H NMR ^{*t*}Bu signal is at δ 1.38.

Fig. 2 Molecular structure of complex ${\bf 6}$ (thermal ellipsoids are shown with 30% probability).

We generated Cp₂Zr in the presence of 0.5 molar equivalent of the enyne **4** and isolated a different compound, namely the alkynyl/alkenyl-bridged bis-zirconocene **6**. It was isolated in *ca*. 50% yield. We assume that in this reaction the zirconacycloallenoid **2c** is formed first and that this can then react with an additional Cp₂Zr equivalent *via* its (σ -alkenyl, σ -alkynyl)ZrCp₂ isomer **5** formed by C–C bond cleavage. Similar reactions had previously been observed in bis(alkynyl)zirconocene/ 'Rosenthal-zirconacyclocumulene' chemistry.¹³

Complex **6** was characterized by NMR spectroscopy and X-ray diffraction. The structural and spectroscopic features of the (alkyne)ZrCp₂ and (alkene)ZrCp₂ structural subunits of **6** are markedly different from those of the respective zirconacyclo-allenoid **2c**. The molecular structure of complex **6** shows an alkynyl ligand that is σ -bonded to Zr1 (Zr1–C2 2.181(4) Å) and π -bonded to Zr2 (Fig. 2). The bond lengths of this unit amount to 1.242(6) Å (C1–C2), 2.376(4) Å (Zr2–C1) and 2.403(4) Å (Zr2–C2). The C2–C1–C5 "substituent angle" of complex **6** was found at 140.8(5)° (Zr1–C2–C1 172.8(4)°). Zirconium atom Zr2 has the *trans*-styryl-ligand σ -bonded to it (Zr2–C4 2.258(4) Å, C3–C4 1.396(6) Å, θ = Zr2–C4–C3–C31 –162.2(4)°). This ligand is π -coordinated to Zr1 (Zr1–C3 2.576(5) Å, Zr1–C4 2.514(4) Å, angles Zr2–C4–C3 142.2(3)°, C4–C3–C31 128.6(4)°).

Compound **6** shows sharp NMR signals in solution at 213 K (C_7D_8). The ${}^{1}H/{}^{13}C$ NMR features of the pair of σ/π -ligands in **6** are quite different from those of the corresponding subunits of **2c**. Compound **6** shows the ${}^{13}C$ NMR resonances of the σ/π -acetylide moiety at δ 215.0 (C2) and δ 170.9 (C1), respectively. The ${}^{1}H$ NMR signals of the σ/π -trans-styryl ligand occur at δ 9.66 and 5.41 (AX, ${}^{3}J_{\rm HH}$ = 19.7 Hz) with corresponding ${}^{13}C$ NMR resonances at δ 209.6 (C4) and 105.6, respectively. The chiral bis(zirconocene) complex **6** exhibits two pairs of diastereotopic Cp-ligands; consequently we have observed four sharp ${}^{1}H$ NMR Cp-signals (δ 5.43, 5.09, 5.02, 4.62). Increasing the monitoring temperature leads to a pairwise coalescence of the ${}^{1}H$ NMR Cp signals. This probably indicates a mutual exchange of the σ -alkenyl/ σ -alkynyl pair of ligands between

Fig. 3 Molecular structure of complex 8 (thermal ellipsoids are shown with 30% probability).

the pair of zirconocene units⁹ (see Scheme 2) $[\Delta G_{rearr}^{\neq}(273 \text{ K}) = 12.1 \pm 0.2 \text{ kcal mol}^{-1}$ (for details see the ESI[‡])].

We^{12b} and others¹⁴ had previously shown that five-membered zirconacycloallenoids often insert organic nitriles into the Zr-C bond¹⁵ with the formation of the corresponding seven-membered metallacycloallenoid products. Complex 2c behaves differently. It seems that complex 2c reacts with acetonitrile by means of a metallacyclic cycloaddition reaction via its reactive η^2 -alkyne isomer 7 (see Scheme 3). Treatment of 2c with acetonitrile overnight at r.t. gave product 8. The X-ray crystal structure analysis shows the presence of the doubly unsaturated five-membered metallaheterocyclic cores (Zr1-N1A 2.247(5) Å, N1A-C9A 1.286(8) Å, C9A-C1A 1.498(9) Å, C1A-C2A 1.347(9) Å, Zr1-C2A 2.402(7) Å) to which the remaining trans-styryl substituent is bonded (C3A-C4A 1.337(10) Å, θ = C1A-C2A-C3A-C4A 69.1(11)°, θ = C2A-C3A-C4A-C21A $173.3(7)^{\circ}$, see Fig. 3). The overall structure of compound 8 is dimeric¹⁶ with monomeric entities being connected by means of intramolecular Zr-N coordination (Zr1-N1# 2.359(5) Å, angle Zr1-N1A-Zr1# 109.7(2)°).

In solution the typical ¹H NMR features of the *trans*-styryl substituent have been observed (δ 7.36, 5.80, AX, ³*J*_{HH} = 15.8 Hz). The ¹³C NMR resonance of the endocyclic N=C

moiety was located at δ 193.4; the adjacent C=C bond shows its ¹³C NMR resonances at δ 205.2 (ZrC=) and 148.7, respectively. Complex 8 shows a sharp ¹H NMR Cp resonance at δ 5.83 and the ^{*t*}Bu ¹H NMR signal at δ 1.42.

Conclusions

Our study has provided us with some detailed structural information about the very special class of the metallacycloallenoid complexes. It has revealed some interesting new reactivities, be it in its reaction with an additional zirconocene equivalent or the addition of acetonitrile. The metallacycloallenoids 2 occupy an interesting position between Rosenthal's metallacyclocumulenes 1 and Suzuki's metallacycloalkynes 3. They seem to show an interesting chemical behavior towards unsaturated organic and organometallic reagents, as shown by the examples described in this study.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Notes and references

¶Preparation of complex 2c: *N*-butylmagnesium chloride (0.68 ml, 2 M diethyl ether solution, 1.36 mmol, 2 eq.) was added to a solution of bis(η⁵-cyclopentadienyl)zirconium dichloride (200 mg, 0.68 mmol, 1 eq.) and enyne 4 (153 mg, 0.83 mmol, 1.2 eq.) in THF (8 ml) at -78 °C. After heating for 1 h at 60 °C, the volatiles of the deep red mixture were removed *in vacuo* and the residue was extracted with diethyl ether (3 × 10 ml). The red coloured filtrate was concentrated and cooled to -30 °C. Compound 2c was obtained as yellow-orange crystals (161 mg, 58%). ¹H NMR (500 MHz, 299 K, [*d*₆]-benzene): $\delta = 7.26$ (m, 2H, *m*-Ph), 7.21 (m, 2H, *o*-Ph), 6.98 (m, 1H, *p*-Ph), 5.39 (s, 5H, Cp^A), 5.04 (d, ³*J*_{HH} = 13.9 Hz, 1H, 3-H), 4.87 (s, 5H, Cp^B), 2.72 (d, ³*J*_{HH} = 13.9 Hz, 1H, 4-H), 1.38 (s, 9H, ¹Bu). ¹³C{¹H} NMR (126 MHz, 299 K, [*d*₆]-benzene): $\delta = 162.5$ (C-1), 146.4 (i-Ph), 128.9 (*m*-Ph), 123.6 (*o*-Ph), 123.0 (*p*-Ph), 116.7 (C-2), 104.8 (Cp^A), 102.7 (Cp^B), 92.8 (C-3), 68.5 (C-4), 36.2 (^tBu), 33.4 (^tBu).

- 1 G. Erker, G. Kehr and R. Fröhlich, *Adv. Organomet. Chem.*, 2004, **51**, 109.
- 2 (a) U. Rosenthal, A. Ohff, W. Baumann, R. Kempe, A. Tillack and V. V. Burlakov, Angew. Chem., Int. Ed. Engl., 1994, 33, 1605; (b) P.-M. Pellny, V. V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg and U. Rosenthal, J. Am. Chem. Soc., 2000, 122, 6317; (c) U. Rosenthal, V. V. Burlakov, P. Arndt, W. Baumann and A. Spannenberg, Organometallics, 2005, 24, 456; (d) S. Roy, E. D. Jemmis, M. Ruhmann, A. Schulz, K. Kaleta, T. Beweries and U. Rosenthal, Organometallics, 2011, 30, 2670.
- 3 (a) N. Suzuki, M. Nishiura and Y. Wakatsuki, Science, 2002,
 295, 660; (b) N. Suzuki, N. Aihara, H. Takahara,
 T. Watanabe, M. Iwasaki, M. Saburi, D. Hashizume and
 T. Chihara, J. Am. Chem. Soc., 2004, 126, 60; (c) N. Suzuki,
 N. Aihara, M. Iwasaki, M. Saburi and T. Chihara, Organometallics, 2005, 24, 791.

- 4 (a) J. Ugolotti, G. Dierker, G. Kehr, R. Fröhlich, S. Grimme and G. Erker, Angew. Chem., Int. Ed., 2008, 47, 2622;
 (b) J. Ugolotti, G. Kehr, R. Fröhlich, S. Grimme and G. Erker, J. Am. Chem. Soc., 2009, 131, 1996.
- 5 N. Suzuki, D. Hashizume, H. Koshino and T. Chihara, *Angew. Chem., Int. Ed.*, 2008, **47**, 5198.
- 6 See also: R. Rosenthal, Angew. Chem., Int. Ed., 2004, 43, 3882.
- 7 (a) H. Yasuda, Y. Kajihara, K. Mashima, K. Nagasuna, K. Lee and A. Nakamura, *Organometallics*, 1982, 1, 388;
 (b) H. Yasuda and A. Nakamura, *Angew. Chem., Int. Ed. Engl.*, 1987, 26, 723.
- 8 R. Beckhaus and K.-H. Thiele, *J. Organomet. Chem.*, 1984, 268, C7.
- 9 (a) G. Erker, J. Wicher, K. Engel, F. Rosenfeldt, W. Dietrich and C. Krüger, *J. Am. Chem. Soc.*, 1980, 102, 6344;
 (b) G. Erker, C. Krüger and G. Müller, *Adv. Organomet. Chem.*, 1985, 24, 1.
- 10 E. Negishi, F. E. Cederbaum and T. Takahashi, *Tetrahedron Lett.*, 1986, 27, 2829.
- 11 N. Suzuki, T. Shimura, Y. Sakaguchi and Y. Masuyama, Pure Appl. Chem., 2011, 83, 1781.
- 12 (a) G. Bender, T. Wiegand, H. Eckert, R. Fröhlich,
 C. G. Daniliuc, C. Mück-Lichtenfeld, S. Ndambuki,
 T. Ziegler, G. Kehr and G. Erker, *Angew. Chem., Int. Ed.*,

2012, **51**, 8846; (*b*) G. Bender, G. Kehr, R. Fröhlich, J. L. Petersen and G. Erker, *Chem. Sci.*, 2012, **3**, 3534; (*c*) G. Bender, G. Kehr, C. G. Daniliuc, Q. M. Dao, S. Ehrlich, S. Grimme and G. Erker, *Chem. Commun.*, 2012, **48**, 11085.

- 13 (a) G. Erker, W. Frömberg, R. Mynott, B. Gabor and C. Krüger, Angew. Chem., Int. Ed. Engl., 1986, 25, 463;
 (b) G. Erker, W. Frömberg, R. Benn, R. Mynott, K. Angermund and C. Krüger, Organometallics, 1989, 8, 911; (c) U. Rosenthal, A. Ohff, W. Baumann, R. Kempe, A. Tillack and V. V. Burlakov, Organometallics, 1994, 13, 2903.
- 14 S. Zhang, W.-X. Zhang, J. Zhao and Z. Xi, *J. Am. Chem. Soc.*, 2010, **132**, 14042.
- 15 See for a comparison: J. Ugolotti, G. Kehr, R. Fröhlich and G. Erker, *Chem. Commun.*, 2009, 6572.
- 16 (a) H. Takaya, M. Yamakawa and K. Mashima, J. Chem. Soc., Chem. Commun., 1983, 1283; (b) G. Erker, U. Dorf, P. Czisch and J. L. Petersen, Organometallics, 1986, 5, 668; (c) S. L. Buchwald, A. Sayers, B. T. Watson and J. C. Dewan, Tetrahedron Lett., 1987, 28, 3245; (d) G. Erker, U. Hoffmann, R. Zwettler, P. Betz and C. Krüger, Angew. Chem., Int. Ed.Engl., 1989, 28, 630; (e) R. Choukroun, C. Lorber and L. Vendier, Organometallics, 2007, 26, 3784.