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Catalytic oxidation of cyclohexene (organic layer) at 25 °C in a stirred two phase system with fresh
[Fe(OH2)6](ClO4)3/H2O2 in the pH range 2.0–4.0 (I = 0.1 M, NaClO4/HClO4) is complete within a 2-minute
sampling time before deactivating in contrast to previous reports in the literature. Cyclohexene epoxide is
a significant product alongside the more dominant allylic oxidation products; 2-cyclohexen-1-ol and
2-cyclohexen-1-one. Both epoxide and the accompanying allylic products appear over the same time period
suggesting that they derive from the same catalytic species. The pH dependence of oxidation product yield
(optimizing at ~pH 3) suggests that the active catalyst derives from reactions involving [Fe(OH2)5OH]

2+

(pKa 2.54) and is most likely the hydroperoxo ion [Fe(OH2)5OOH]2+. Yields of cyclohexene epoxide are inde-
pendent of the presence of dioxygen suggesting that an activated form of H2O2 ([Fe(OH2)5OOH]2+) is re-
sponsible. Reduction in the relative yield of the two allylic oxidation products in the absence of dioxygen
suggests that they derive from 2-cyclohexen-1-peroxy radicals resulting from iron(II)-promoted Fenton
chemistry following homolytic Fe\O or O\O cleavage on [Fe(OH2)5OOH]2+. A mechanism for the epoxide
formation is proposed involving H3O+-assisted heterolytic O\O cleavage on [Fe(OH2)5OOH]2+ accompany-
ing O atom transfer to the cyclohexene double bond. Accompanying catalysis of H2O2 decomposition persists
over several hours. For the first time in a Fenton-like system evidence has been obtained for different time-
scales for the catalysis of oxidation reactions versus catalysis of H2O2 decomposition.

© 2013 Elsevier B.V. All rights reserved.
The reactions of hydrogen peroxide with aqueous iron(II)
(Fenton's reagent) Eq. (1) and aqueous iron(III) (the Fenton-like re-
action) Eq. (2) have been known and studied for many years [1–4].

Fe2þaq þ H2O2→Fe3þaq þ HO þ OH− ð1Þ

Fe2þaq þ H2O2→Fe2þaq þ Hþ þ HOO· ð2Þ

As an effective source for the non-discriminating hydroxyl radical
the Fenton reaction has been much studied and indeed widely
employed as a remediation agent for water purification processes,
particularly for the oxidative mineralization of various chlorinated
aromatic hydrocarbon pollutants [5–14]. However speculation con-
tinues as to whether Eq. (1) is truly representative of all the species
generated [4,15–19]. Since aqueous iron(III) eventually precipitates
from neutral or mildly acidic solution as hydrous oxy-hydroxide spe-
cies there have been fewer studies on the corresponding Fenton-like
reaction in regard to the nature of the species generated and their ox-
idizing ability in regard to potential environmental applications.
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Most of the studies to date with iron(III) under mildly acidic condi-
tions have focused on its photo [9–10,20] or electrochemical [21] reduc-
tion to generate iron(II) for initiating Eq. (1) etc. or its known catalysis
of H2O2 decomposition [2]. The mechanism of the ferric ion catalyzed
H2O2 decomposition reaction has been the subject of much debate
[22–25] with mono(peroxo)iron(III) and at high [H2O2], bis(peroxo)
iron(III) complexes, invoked to explain the observed kinetics. Studies
by Wynne-Jones et al. [24,25] showed that catalytic decomposition of
H2O2 optimizes around pH 2.4, decreasing sharply at higher pHs. The
rapid formation of yellow–brown colorations uponmixingmildly acidic
solutions of aqueous iron(III) and hydrogen peroxide have been well
documented and attributed to equilibria (3)–(5)[22–25].

Fe OH2ð Þ6
� �3þ þH2O2⇌

KHOOH Fe OH2ð Þ5 HOOHð Þ� �3þ þH2O ð3Þ

Fe OH2ð Þ6
� �3þ þH2O2⇌

KOOH Fe OH2ð Þ5 OOHð Þ� �2þ þH3O
þ ð4Þ

Fe OH2ð Þ6
� �3þþ 2H2O2 ⇌

K2HOOH Fe OH2ð Þ4 OOHð Þ HOOHð Þ� �2þþH3O
þ þH2O

ð5Þ

Reaction (4) is relevant to the pH range 2–4 with Eq. (3) only rel-
evant below pH 2 and Eq. (5) at high [H2O2]. Values for KOOH have
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Fig. 1. GC trace following sampling of the cyclohexene layer after 2 min at 25 °C.
The labeled products are A; cyclohexene epoxide, B; 2-cyclohexen-1-ol/cyclohexanol,
C; 2-cyclohexen-1-one. The peak at Rf 6.91 min is from cyclooctane added as reference
prior to running the GC. Aqueous layer: [H2O2]init = 10 mM; [Fe(III)]init = 0.2 mM, pH 2.7.
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been reported as 3.7 × 10−3[26] and 2 × 10−3[23] with values for
KHOOH ~3.2 × 10−2 M−1 and for K2HOOH ~6.6 × 10−4 M−1[23].

In 1999, Pignatello et al. reported the reactions of a photo activated
Fenton-like reagent (0.2 mM Fe(III)aq/2.0 mM H2O2/I = 0.1 M, NaClO4/
HClO4, pH 1–3) with cyclohexane, cyclohexene, 1,1,2-trichloroethane,
trichloroethene and tetrachloroethene in a stirred two-phase system
at 25 °C [27]. KOOH Eq. (4) was determined spectrophotometrically
at 450 nm to be (9.0 ± 1.5) × 10−3 at pH 2.8 shifting to (1.4 ± 0.5) ×
10−2 at pH 1.45. This latter value is similar to that reported by Lewis et
al. [23] for KHOOH and is presumed here to refer to reaction (3). Interest-
ingly the reactions with the chlorinated hydrocarbons; trichloroethene
and tetrachloroethene studied at pH 2.8 gave a distribution of carboxylic
acid products (particularly high yields of dichloroethanoic acid from
trichloroethene) not consistent with solely radical processes initiated
by H atom abstraction, e.g. by OH radicals, but rather from the decompo-
sition of an intermediate epoxide [27]. Subsequent investigations with
cyclohexene at pH 2.8 led to the detection of significant amounts
of epoxide accompanying formation of the expected allylic oxidation
products; 2-cyclohexen-1-ol and 2-cyclohexen-1-one [27]. However a
surprising observation was the slow appearance of reaction products
over several hours. Substitution of water on [Fe(OH2)5OH]2+, the likely
aqua iron(III) species present under the stated conditions [28,29], is fast
(kex298 = 1.4 × 105 s−1) [30] suggesting that assembly of the active cata-
lyst from complexes such as [Fe(OH2)4(HOOH)OH]2+ Eq. (6) or more
likely, given the higher acidity of coordinated H2O2[25], its tautomeric
form [Fe(OH2)5OOH]2+ Eq. (7) occurs on the submillisecond timescale.

½FeðOH2Þ5OH�2þ þ H2O2→½FeðOH2Þ4ðHOOHÞOH�2þ þ H2O ð6Þ

ð7Þ

Furthermore, the formation of epoxide, which is only observed in
the presence of iron(III), is not consistent with reactions involving OH
radicals e.g. via Eq. (1) and suggests another source for the oxidation.
It was speculated [27] that [Fe(OH2)5OOH]2+ could homolytically
cleave at the O\O group to generate the oxo-aquairon(IV) complex;
[Fe(_O)(OH2)5]2+ which actually transfers oxygen to the cyclohexene.
However extensive studies by Bakac and co-workers on the chemistry
of oxo-aquairon(IV), generated via reaction of ozone with [Fe(OH2)6]2+,
show that it tends to rather promote H atom or hydride abstraction and
only transfers oxygen to highly oxophilic substrates such as sulfoxides
or phosphines [31,32].

We have re-investigated Pignatello's reaction of aqueous iron(III)
(added as a freshly made up acidified solution of [Fe(OH2)6](ClO4)3
adjusted to pH 2–4) and H2O2 with neat cyclohexene in a stirred
two-phase system [33]. A typical GC trace for the reaction products
isolated from the cyclohexene layer at pH 2.7, Fig. 1, confirms the
presence of cyclohexene epoxide A (Rf = 5.78 min) accompanying
the formation of 2-cyclohexen-1-ol/cyclohexanol B (not resolved)
(Rf = 6.23) and 2-cyclohexen-1-one C (Rf = 6.68). The peak at
Rf = 6.91 is from cyclooctane added as an internal reference. Fig. 2
shows a typical plot (25 °C) at pH 3.0 representing integration of
the GC peaks A–C as a function of sampling time after the initial injec-
tion of H2O2. The product yields were calculated relative to the
amount of the internal reference added to each sample. Clearly appar-
ent from Fig. 2 is the rapid formation of products within the first
2-minute sampling time with little or no change thereafter over a
1-hour period. It was initially thought that the loss of activity after
the initial 2-minute sampling was due to rapid depletion of H2O2

from the reaction solution. However subsequent monitoring of the
[H2O2] concentration via permanganate titration of aliquots of the
aqueous phase in a separate run (shown also in Fig. 2) showed only
a slow but steady decrease over the first hour. The addition of further
aliquots of stock H2O2 solution after 10 and 20-minute reaction,
Figure S1, indeed failed to restore the catalytic activity of the solution.
However, the addition of aliquots of fresh iron(III) solution did re-
store some activity over the first 30 min, Figure S2, when amounts
of H2O2 were still present, Fig. 2. A gradual darkening of the aqueous
phase followed by a brown turbidity after 1 h suggested that the
loss of catalytic oxygenation activity is due to gradual depletion of
soluble mononuclear aqua iron(III) via hydrolytic polymerization to
inactive colloidal forms and finally precipitation of insoluble iron(III)
oxy-hydroxides [28]. A closer inspection of the H2O2 decay profile,
Fig. 2, reveals an induction period within the first 2 min correlating
with the maximum rate of H2O2 activation towards oxygenation.
Thereafter, efficient catalysis of H2O2 decomposition dominates.

A further insight into the nature of the putative iron(III) oxygenation
catalyst came frommonitoring the pH dependence of the yields of oxi-
dation products following the initial sampling after 2-minute reaction,
Fig. 3. The yields of all products increase sharply in the pH range 2.7–
3.2 before decreasing at higher pHs. Interestingly there is a small but
noticeable increase in the relative yield of epoxide compared to the
allylic oxidation products; the epoxide yield increasing between pH
2.7 and 3.2 to reach ~13% of the total oxidation products seen. Above
pH3.2 the total product yield decreases but the relative yield of epoxide
remains steady at ~11%. The speciation profiles of aqua iron(III) at
below mM concentrations (data from [29a] shown in Fig. 3 for com-
parison) indicate a correlation of oxygenation catalytic activity with
amounts of the hydroxopentaaqua ion; [Fe(OH2)5OH]2+ (pK11 = 2.54
at I = 0.1 M, NaClO4) [29a]. With oxo-aquairon(IV) not proven as an
effective epoxidation catalyst [31c], we tentatively propose the follow-
ing mechanism for alkene epoxidation, Fig. 4. Firstly, an activated com-
plex forms between [Fe(OH2)5OOH]2+ and cyclohexene which then
undergoes intramolecular iron-bound oxygen atom transfer (most
electrophilic) to the cyclohexene double bond accompanying (H3O+)-
assisted O\O heterolysis. Formation of the allylic oxidation products;
2-cyclohexen-1-ol and 2-cyclohexen-1-one will arise via the generally
accepted radical autoxidation mechanism (8)

ð8Þ
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Fig. 2. Time dependence of formation of oxidation products (black symbols) at 25 °C following sampling of the cyclohexene layer respectively at various time intervals [32]: A
cyclohexene epoxide; B 2-cyclohexen-1-ol/cyclohexanol; C 2-cyclohexen-1-one. Aqueous layer: [H2O2]init = 10 mM; [Fe(III)]init = 0.2 mM, pH 3.0. The open circles show the
time dependence of the H2O2 concentration in the aqueous layer in a separate blank run under the same conditions. Here 5 cm3 aliquots were removed from a 100 cm3 volume
of the aqueous layer after the set time interval and quenched by injection into a 25 cm3 solution of 0.1 M HClO4 for titration with standard permanganate.
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involving the trapping of 2-cyclohexene-1 radicals by dioxygen
present in the air or from the accompanying H2O2 decomposition. Con-
firmation of this was provided by runs conducted air-free wherein the
yields of 2-cyclohexen-1-ol and 2-cyclohexen-1-one are reduced sig-
nificantly, Table 1, compared to the epoxide; which now assumed
N57% of the total products observed at the optimum pH. The flux of
2-cyclohexen-1 radicals most likely derives from iron(II)-promoted
Fenton chemistry involving H atom abstraction through OH radicals
and/or oxo-aquairon(IV). Both species can be readily generated
from [Fe(OH2)5OOH]2+ either via Fe\O homolysis (e.g. Eq. (9) then
Eq. (1)) or O\O homolysis Eq. (10)[34,35]. The most likely pathway is
Fig. 3. pH dependence of the yields of oxidation products at 25 °C following sampling
of the cyclohexene organic layer after 2 min: A cyclohexene epoxide; B 2-cyclohexen-
1-ol/cyclohexanol; C 2-cyclohexen-1-one. Aqueous layer: [H2O2]init = 10 mM;
[Fe(III)]init = 0.2 mM. The iron(III) speciation data is from ref. 30a (with permission)
for I = 0.1 M, NaClO4, [Fe(III)] = 0.01 mM.
via Eq. (9) given the presence of high spin iron(III) in [Fe(OH2)5OOH]2+.

FeðOOHÞ2þaq →Fe2þaq þ HOO· ð9Þ

FeðOOHÞ2þaq →FeIVO2þ
aq þ HO· ð10Þ

The insensitivity of epoxide formation to the presence of molecu-
lar oxygen suggests that an activated form of H2O2 is responsible
for its formation rather than organoperoxy radicals deriving from
Eq. (8) which have been reported to generate epoxides from alkenes
but in very small yields.

An additional mechanistic possibility is for the H3O+-assisted
O\O heterolysis on [Fe(OH2)5OOH]2+ to take place prior to addition
of the ‘O’ atom across the double bond [36]. Such a reaction would
generate a ‘perferryl’ oxo-aquairon(V) species, [17,22] the oxo
group of which would be expected to be very much more electro-
philic than oxo-aquairon(IV) or the iron bound peroxooxygen of
[Fe(OH2)5OOH]2+ leading to rapid ‘O’ addition across the cyclohexene
double bond. In polar aprotic solvents in the presence of a number of
2-pyridylmethylamine chelate ligands, evidence has been recently
claimed [37] for the formation of short lived highly reactive perferryl
oxoiron(V) species, generated via H2O2 or peroxycarboxylate oxidation
of their iron(II) counterparts. These iron species have been suggested as
responsible for the catalysis of alkene epoxidation by H2O2 in the
presence of ethanoic acid [38] and the insertion of ‘O’ into unreactive
C\H bonds such as in the formation of salicylate from peroxybenzoate
[39] or H2O2/benzoate [40]. Aqueous iron(V) however has an ex-
tremely short lifetime away from strongly alkaline media (lifetime
b10 μs below pH 4) [41]. So while we cannot directly rule out an oxo
aquairon(V) species as responsible for alkene epoxidation in the
present system, its trapping (reduction) by cyclohexene would require
an extremely fast and efficient process at the solvent interface capable
of competing successfully with its rapid reduction by excess H2O2

Eq. (11).

FeVO3þ
aq þ H2O2→Fe3þaq þ O2 þ H2O ð11Þ

To date the only example of a stable spectroscopically-
characterized oxoiron(V) complex is [Fe(O)(TAML)]− (TAML4− =
various deprotonated tetraamido macrocycle ligands) reported in
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2007 by Collins et al. [42] and even here it is stable only in polar apro-
tic solvents at −60 °C.

The rapid appearance of oxidation products observed in this study,
including cyclohexene epoxide, before catalyst deactivation contrasts
with their reported ‘slow’ (hours) appearance in the same pH range in
the earlier published work [27]. However the rapid processes observed
here are entirely consistent with the expected rapid formation and
Table 1
Yields of oxidation products in cyclohexene layer following sampling after 2 min as a functi
air. [H2O2]init = 10 mM; [Fe(III)]init = 0.2 mM.

pH Moles 2-cyclohexan-1-ol/
cyclohexanol

Moles 2-cyclohexan-2-one Moles cyclohexene
epoxide

Mole
oxida

2.0 1.12 × 10−4 1.75 × 10−4 1.05 × 10−5 2.98
2.7 3.87 × 10−4 5.03 × 10−4 4.66 × 10−5 9.37

4.48 × 10−5 4.71 × 10−5 3.82 × 10−5 1.3
3.0 6.91 × 10−4 1.47 × 10−3 1.34 × 10−4 2.29

4.99 × 10−5 5.04 × 10−5 1.05 × 10−4 2.05
3.2 1.39 × 10−3 1.88 × 10−3 4.94 × 10−4 3.76

4.67 × 10−5 5.23 × 10−5 1.33 × 10−4 2.33
3.4 9.38 × 10−4 1.43 × 10−3 3.45 × 10−4 2.71
3.6 3.13 × 10−4 6.25 × 10−4 1.15 × 10−4 9.66
4.0 4.27 × 10−5 8.44 × 10−5 1.52 × 10−5 1.42
subsequent reactions of [Fe(OH2)5OOH]2+with the cyclohexene organ-
ic layer in the stirred two phase system. A slow reaction over several
hours is hard to rationalize given the lability of aqueous iron(III) species
and known rapidity of reactions (1)–(11)[4] and subsequent aging pro-
cesses. The rapid stirring of the two phases performed here (rate
~1000 rpm) is in keeping with the experimental conditions previously
reported [27] so different rates ofmass transfer between the two phases
on of aqueous phase pH. The values in italics are from runs conducted in the absence of

s total
tion products

% Epoxide in total
products

% Efficiency total products
based on H2O2

TON total products
based on Fe(III)

× 10−4 3.5 119 60
× 10−4 5.0 375 187
× 10−4 29.3 52 26
× 10−3 5.9 916 458
× 10−4 51.2 82 41
× 10−3 13.1 1500 752
× 10−4 57.1 93 47
× 10−3 12.7 584 292
× 10−4 11.9 386 193
× 10−4 10.7 57 28
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would seem unlikely as an explanation. Also in the previous work, the
photochemical nature of the Fenton-like catalysis was emphasized. Fol-
lowing runs conducted in daylight, in the dark and under mild UV light
it appears that the profile of product formation in the present system is
not influenced by photo-activation.

For the first time in a Fenton-like system evidence has been
obtained for different timescales for the catalysis of oxidation reac-
tions versus catalysis of H2O2 decomposition. The active oxidation
catalyst is only short lived (≤2 min) following the addition of
fresh [Fe(OH2)6]3+ and thereafter quickly deactivates presumed due
to depletion of [Fe(OH2)5OH]2+/[Fe(OH2)5OOH]2+ from the aqueous
phase. The accompanying catalysis of H2O2 decomposition however
persists over 1–2 h as the iron(III) solution ‘ages’. The development of
methods for maintaining the flux of mononuclear [Fe(OH2)5OH]2+/
[Fe(OH2)5OOH]2+ in solution over longer periods is the subject of ongo-
ing research.
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