

PII: S0040-4039(96)01085-4

First Total Synthesis and Structural Elucidation of (-)-Goniofupyrone

Chisato Mukai,* Syuichi Hirai, In Jong Kim, and Miyoji Hanaoka*

Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920, Janan

Abstract: The first total synthesis of (-)-goniofupyrone, isolated from Goniothalamus giganteus, was accomplished in a stereoselective manner from (+)-tricarbonyl(η^{6} -2-trimethylsilylbenzaldehyde)-chromium(0) complex. This synthesis unambiguously established the relative and absolute stereochemistry of (-)-goniofupyrone. Copyright © 1996 Elsevier Science Ltd

In 1991 (-)-goniofupyrone was isolated with several other antitumor styryllactones from the stem bark of Goniothalamus giganteus.¹ The gross structure of goniofupyrone was determined as $(4R^*,4aR^*,6S^*,7S^*,7aR^*)-4,7$ -dihydroxy-6-phenyl-1,5-dioxabicyclo[4.3.0]nonan-2-one (1) based on its spectral evidence, especially by analysis of NMR spectra as well as by comparison with those of the related compounds, (+)altholactone (3)² and its stereocongeners.³ However, no information on its absolute configuration has so far been available. We describe herein the first total synthesis of 1, the originally proposed structure for goniofupyrone, and its C-4 epimer 2 in optically active form, thereby unambiguously establishing the relative as well as absolute configuration of (-)-goniofupyrone.

Recently we have completed stereoselective total syntheses of goniofufurone,^{4a,b} goniobutenolide A and B,^{4b} antitumor styryllactones possessing the γ -lactone skeleton as a common structural feature, from (+)-tricarbonyl(η^{6-2} -trimethylsilylbenzaldehyde)chromium(0) complex⁵ via the γ -butenolide intermediate 4. Therefore our first concern and most significant requirement for our stereocontrolled synthesis of 1 and 2 in this paper was efficient transformation of the γ -lactone moiety of 4 into the δ -lactone framework.⁶ The hydroxy group of (-)-4,⁴ prepared from the chiral benzaldehyde-chromium(0) complex by six steps, was protected with TMS group to give 5 (97%), which was subsequently exposed to the following conditions,⁶ (i) reduction with

DIBALH, (ii) treatment with potassium *tert*-butoxide at -60°C, (iii) oxidation with PDC, selectively giving rise to the ring transformed product 6 accompanied with migration of TMS group. Acid treatment of the crude products consising of 6 and a small amount of 5 provided the desired δ -lactone (-)-7,⁷ in 67% overall yield from 5 along with (-)-4 (7%). Construction of the dioxabicyclo[4.3.0]nonenone skeleton was achieved by tosylation of the allylic hydroxy group of 7 (92%), followed by exposure to tetrabutylammonium fluoride and hydrofluoric acid to afford (+)-8 in 89% yield. Debenzylation of 8 with SnCl₄ gave (+)-altholactone (3)^{7,8} in 98% yield.

Reaction Conditions : (a) TMS-imidazole, CH_2Cl_2 , rt, 97%; (b) DIBALH, Et_2O , -78°C; (c) ^fBuOK, THF, -60°C; (d) PDC, AcONa, CH_2Cl_2 , rt; (e) 10% HCl, MeOH, rt, 67% from 5; (i) TsCl, DMAP, rt, 92%; (g) TBAF-HF, THF, rt, 89%; (h) SnCl₄, CH_2Cl_2 , 40°C, 98%; (i) OsO₄, NMO, Me₂CO-H₂O, rt, 75%; (j) Sml₂, ethylene glycol, THF, rt, 62%; (k) SnCl₄, CH₂Cl₂, 40°C, 76%; (l) Ac₂O, DMAP, CH₂Cl₂, 90%; (m) DIBALH, Et₂O, -78°C; (n) TsOH, MeOH, rt, 77% (ca. 1 : 1 mixture) from 10; (o) TPAP, NMO, CH₃CN, rt; (p) LiAlH₄, THF, -20°C; (q) *m*-CPBA, BF₃*OEt₂, CH₂Cl₂, *r*, 60% from 12; (r) SnCl₄, CH₂Cl₂, 40°C, 74%; (s) Ac₂O, DMAP, CH₂Cl₂, *r*, 85%.

With the dioxabicyclo[4.3.0]nonen-2-one derivative (+)-8 in hand, next phase of our program is faced to introduction of a hydroxy functionality at C-4 position from a concave face. Since direct and stereoselective hydroxylation at C-4 position of 8 from the *si*-face seemed to be difficult, we alternatively took the stepwise procedure. *cis*-Dihydroxylation of 8 from the *re*-face proceeded in a highly stereoselective manner when exposed to osmium tetraoxide⁹ yielding (+)-9¹⁰ in 75% yield. The hydroxy group at C-3 position of 9 was then removed by samarium diiodide¹¹ to furnish (+)-10 (62%), which was subsequently converted into (-)-2 ($[\alpha]_D^{18}$ -6.9° (*c* 0.15, CHCl₃)),¹² the C-4 epimer of 1. Unexpectedly and surprisingly ¹H-NMR and ¹³C-NMR data of (-)-2^{13,14} and its diacetate 11¹³ were in good agreement with those^{15,16} of natural (-)-goniofupyrone and its diacetate, respectively.

In order to confirm the structure of (-)-goniofupyrone, the synthesis of 1, the proposed structure for goniofupyrone,¹ was completed. The Mitsunobu reaction¹⁷ of 10 under several conditions was unfortunately fruitless, presumably due in large part to the β -hydroxy carbonyl structure leading to easy dehydration. The lactone moiety of 10 was therefore reduced with DIBALH to give 12 as a *ca*. 1 : 1 mixture of two stereoisomers in 77% yield. The acetal 12 was successively oxidized with tetrapropylammonium perruthenate¹⁸ and reduced with LiAlH₄. Regeneration of the lactone moiety of the resulting C-4 epimers of 12 was achieved by treatment with *m*-CPBA in the presence of BF₃•OEt₂¹⁹ producing 13 in 60% overall yield from 12 along with 10 (14%). Finally debenzylation of 13 with SnCl₄ gave (-)-1([α]¹⁸_D-59.2° (*c* 0.10, CHCl₃)).¹² ¹H-NMR and ¹³C-NMR data of synthetic (-)-1,^{20,21} however, were not in accordance with those^{15,16} of natural goniofupyrone. Furthermore, the diacetate 14 showed the different ¹H-NMR spectrum²⁰ from that¹⁵ of the diacetate of natural goniofupyrone.

Thus we have accomplished the first total synthesis of (-)-goniofupyrone (2) from (+)-tricarbonyl(η^{6} -2-trimethylsilylbenzaldehyde)chromium(0) complex in a highly stereocontrolled manner. This synthesis concluded that natural (-)-goniofupyrone possesses (4R,4aS,6R,7R,7aS)-4,7-dihydroxy-6-phenyl-1,5-dioxabicyclo[4.3.0]nonan-2-one structure and should be depicted as 2.

REFERENCES AND NOTES

- (1) Fang, X.-P.; Anderson, J. E.; Chang, C.-J.; McLaughlin, J. L. Tetrahedron 1991, 47, 9751-9758.
- (2) (a) El-Zayat, A. A. E.; Ferrigni, N. R.; McCloud, T. G.; McKenzie, A. T.; Byrn, S. R.; Cassady, J. M.; Chang, C.-J.; McLaughlin, J. L. *Tetrahedron Lett.* 1985, 26, 955-956. (b) Gesson, J. P.; Jacquesy, J. C.; Mondon, M. *Tetrahedron* 1989, 45, 2627-2640.
- (3) Ueno, Y.; Tadano, K.; Ogawa, S.; McLaughlin, J. L.; Alkofahi, A. Bull. Chem. Soc. Jpn. 1989, 62, 2328-2337.
- (4) (a) Mukai, C.; Kim, I. J.; Hanaoka, M. Tetrahedron Lett. 1993, 34, 6081-6082. (b) Mukai, C.; Hirai, S.; Kim, I. J.; Kido, M.; Hanaoka, M. Tetrahedron 1996, 52, 6547-6560.
- (5) Mukai, C.; Cho, W.-J.; Kim, I. J.; Kido, M.; Hanaoka, M. Tetrahedron 1991, 47, 3007-3036.
- (6) Yamazaki, T.; Mizutani, K.; Kitazume, T. J. Org. Chem. 1993, 58, 4346-4359.
- (7) The structure of (-)-7 was elucidated by its spectral evidence. Furthermore, conversion of (-)-7 into the related styryllactones, (+)-goniotriol and (+)-8-acetylgoniotriol *via* inversion of the allylic hydroxy group

unambiguously confirmed its structure. These results combined with the detail of syntheses of (-)goniofupyrone (2) and (+)-altholactone (3) will appear as a full paper in due course.

- (8) Synthetic (+)-altholactone shows mp 108-109°C(lit.^{2a} mp 110°C) and $[\alpha]_D^{25}$ +182.0° (c 0.05, EtOH)(lit.^{2a} $[\alpha]_D^{25}$ +184.7° (EtOH)).
- (9) For example; (a) Naruse, M.; Aoyagi, S.; Kibayashi, C. J. Org. Chem. 1994, 59, 1358-1364. (b) Keck, G. E.; Romer, D. R. J. Org. Chem. 1993, 58, 6083-6089. (c) Hanessian, S.; Murray, P. J. J. Org. Chem. 1987, 52, 1170-1172.
- (10) The relative stereochemistry of two hydroxy groups at C-3 and C-4 positions was determined by X-ray crystallographic analysis of the diacetate derivative of racemic 9. This result will also be reported with the detail of this manuscript.
- (11) Reed, A. D.; Hegedus, L. S. J. Org. Chem. 1995, 60, 3787-3794.
- (12) The reported specific rotation for (-)-goniofupyrone is $[\alpha]_D^{25}$ -5.0° (c 0.10, CHCl₃).¹
- (13) Diagnostically selected ¹H-NMR data: 2; 4.44 (dt, J = 5.9, 3.9 Hz, C₄-H), 4.36 (ddd, J = 5.4, 3.9, 1.0 Hz, C_{4a}-H), 2.91(dd, J = 16.6, 3.9 Hz, C₃-H), 2.68 (ddd, J = 16.6, 5.9, 1.0 Hz, C₃-H). **11**; 5.49 (q, J = 3.9 Hz, C₄-H), 4.36 (br-t, J = 3.9 Hz, C_{4a}-H), 3.03 (dd, J = 17.6, 3.9 Hz, C₃-H), 2.75 (ddd, J = 17.6, 3.9, 1.0 Hz, C₃-H).
- (14) ¹³C-NMR data of 2; 169.29, 137.93, 128.72, 128.46, 126.00, 86.76, 85.72, 83.65, 76.37, 65.82, 35.08.
- (15) Diagnostically selected ¹H-NMR data¹: Goniofupyrone; 4.43 (ddd, J = 5.6, 3.9, 3.6 Hz, C₄-H), 4.32 (br-t, J = 5.2, 3.9 Hz, C_{4a}-H), 2.89 (dd, J = 16.9, 3.6 Hz, C₃-H), 2.67 (dd, J = 16.9, 5.6 Hz, C₃-H). Diacetate of goniofupyrone; 5.47 (q, J = 4.2, 3.8, 3.5 Hz, C₄-H), 4.34 (br-t, J = 3.5 Hz, C_{4a}-H), 3.10 (dd, J = 17.5, 4.2 Hz, C₃-H), 2.73 (dd, J = 17.5, 3.8 Hz, C₃-H).
- (16) ¹³C-NMR data¹ of goniofupyrone; 169.18, 137.90, 128.77, 128.52, 126.04, 86.67, 85.68, 83.68, 76.43, 65.85, 35.07.
- (17) (a) Mitsunobu, O. Synthesis 1981, 1-28. (b) Barks, J. M.; Knight, D. E.; Weingarten, G. G. J. Chem. Soc., Chem. Commun. 1994, 719-720.
- (18) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639-666.
- (19) Grieco, P. A.; Oguri, T.; Yokoyama, Y. Tetrahedron Lett. 1978, 419-420.
- (20) Diagnostically selected ¹H-NMR data: 1; 4.49 (dd, J = 6.4, 3.9 Hz, C_{4a}-H), 4.37 (m, C4-H), 2.91(dd, J = 16.6, 7.8 Hz, C₃-H), 2.63 (dd, J = 16.6, 3.4 Hz, C₃-H). 14; 5.40 (ddd, J = 11.2, 5.9, 2.9 Hz, C₄-H), 4.63 (t, J = 2.9 Hz, C_{4a}-H), 3.03 (dd, J = 17.1, 11.2 Hz, C₃-H), 2.91 (dd, J = 17.1, 5.9 Hz, C₃-H).
- (21) ¹³C-NMR data of 1; 168.88, 137.43, 128.79, 128.72, 126.25, 85.93, 84.57, 83.31, 74.11, 63.67, 34.83.

(Received in Japan 10 May 1996; revised 30 May 1996; accepted 3 June 1996)