has a maximum, which is characteristic of autocatalytic reactions and is obtained for the oxidation of H_2O_2 with xenon trioxide in 1 M H_2SO_4 (Fig. 3, curve 2), and the good time correlation of curves 1 and 2 (curve 3) attest to the validity of the assumptions made for explaining kinetic peculiarities of the CL-process observed in the interaction of U(IV), XeO₃, and H_2O_2 in aqueous solutions of sulfuric acid.

The work was financially supported by the Russian Foundation for Basic Research, Project 93-03-12291.

References

- E. Rabinowitch and R. L. Belford, Spectroscopy and Photochemistry of Uranyl Compounds, Pergamon Press, New York, 1964.
- 2. H. D. Burrows and T. G. Kemp, *Chem. Soc. Rev.*, 1974, **3**, 139.

- 3. H. D. Burrows, Inorg. Chem., 1990, 29, 1549.
- L. A. Khamidullina, S. V. Lotnik, Yu. K. Gusev, and V. P. Kazakov, *Radiokhimiya*, 1988, **30**, 92 [Sov. Radiochem., 1988, **30** (Engl. Transl.)].
- 5. Yu. V. Karyakin and I. I. Angelov, *Chistye khimicheskie veshchestva [Pure Chemical Substances]*, Khimiya, Moscow, 1974, 407 (in Russian).
- 6. J. G. Malm and E. H. Appelman, Atomic Energy Rev., 1969, 7, 3.
- 7. I. A. Khamidullina, S. V. Lotnik, and V. P. Kazakov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1990, 2449 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1990, **39**, 2222 (Engl. Transl.)].
- A. K. Pikaev, Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei [Modern Radiation Chemistry. Radiolysis of Gases and Liquids], Nauka, Moscow, 1986, 440 [(in Russian)].
- V. P. Kazakov, Khemilyuminestsentsiya uranila, lantanoidov i d-elementov [Chemiluminescence of Uranyl, Lanthanoids, and d-Elements], Nauka, Moscow, 1980, 176 (in Russian)].
- V. P. Kazakov, G. A. Tolstikov, L. A. Khamidullina, and S. V. Lotnik, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1984, 2830 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 2593 (Engl. Transl.)].

Received June 13, 1992; in revised form January 14, 1994

Synthesis of diphenyl[alkyl(aryl)trimethylsiloxymethyl]phosphines

A. A. Bordachev, M. M. Kabachnik,* Z. S. Novikova, and I. P. Beletskaya

M. V. Lomonosov Moscow State University, Chemical Department, Leninskye gory, 119899 Moscow, Russian Federation. Fax:+7 (095) 932 8846

A series of previously unknown diphenyl[alkyl(aryl)trimethylsiloxymethyl]phosphines was prepared by the reaction of diphenyl(trimethylsilyl)phosphine with carbonyl compounds. The first complexes of these ligands with palladium chloride were prepared.

Key words: diphenyl(trimethylsilyl)phosphine, reactions with aldehydes and ketones.

It is known that functionally substituted tertiary phosphines behave as ligands of transition-metal complexes.¹ In the present work a general synthesis of diphenyl[alkyl(aryl)trimethylsiloxymethyl]phosphines has been proposed and complexes of these compounds with palladium chloride have been prepared.

It is known that diethyl(trimethylsilyl)phosphine reacts with formaldehyde to produce diethyl(trimethyl-silylmethyl)phosphine² and with α,β -unsaturated aldehydes to give products of 1,4-addition .^{2,3}

We have found that less active diphenyl(trimethylsilyl)phosphine (1) reacts with some aliphatic and aromatic aldehydes at room temperature to produce the corresponding diphenyl[alkyl(aryl)trimethylsiloxymethyl]phosphines (2a-e). Phosphine yields are 50-70 %.

$$Ph_{2}P-SiMe_{3} + R-CHO \xrightarrow{20^{\circ}C} Ph_{2}PCH(R)OSiMe_{3}$$

$$1 \qquad 2a-e$$

$$R = Et(a), Pr(b), i-Pr(c), Ph(d), \qquad (e).$$

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 754-756, April, 1994.

Com- pound	Yield (%)	B. p./°C (0.01 Torr)	$n_{\rm D}^{20}$	NMR ³¹ Ρ δ	Found Calculated (%)			Elemental formula
					С	Н	Р	
2a	50	98-100*		-6.5	$\frac{68.04}{68.35}$	<u>7.12</u> 7.91	<u>9.68</u> 9.81	C ₁₈ H ₂₅ OPSi
2b	65	126-127	1.5620	-8.0	<u>68.67</u> 69.09	<u>7.52</u> 8.18	<u>9.22</u> 9.39	C ₁₉ H ₂₇ OPSi
2c	70	125—126	1.5615	-8.4	<u>68.86</u> 69.09	<u>6.94</u> 8.18	<u>9.47</u> 9.39	C ₁₉ H ₂₇ OPSi
2d	70	169—171*		2.8	<u>72.84</u> 72.53	<u>6.62</u> 6.78	<u>8.52</u> 8.50	C ₂₂ H ₂₅ OPSi
2e	52	166—168	1.5624	-5.0	<u>67.53</u> 67.77	<u>6.51</u> 6.54	<u>8.90</u> 8.74	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{O}_{2}\mathrm{PSi}$
3a	50	112-113	1.5651	13.0	<u>68.30</u> 68.35	<u>8.54</u> 7.91	<u>9.69</u> 9.81	C ₁₈ H ₂₅ OPSi
3b	52	170-171	1.5674	21.0	<u>72.54</u> 72.78	<u>7.91</u> 7.43	<u>8.20</u> 8.17	C ₂₃ H ₂₈ OPSi
3c	56	154—155	1.5680	6.0	<u>70.57</u> 70.85	<u>7.90</u> 8.14	<u>8.55</u> 8.71	C ₂₁ H ₂₉ OPSi

Table 1. Physicochemical characteristics, yields, and data of ³¹P NMR and elemental analysis of compounds 2a-e, 3a-e

* M.p./°C: 61(2a); 68(2d).

The addition of diphenyl(trimethylsilyl)phosphine at the carbonyl group of ketones was successful only in the presence of a catalytic amount of cadmium iodide. The reaction proceeds for 3 hours, and the yields of the corresponding phosphines **3a**, **b** are 50-60 %.

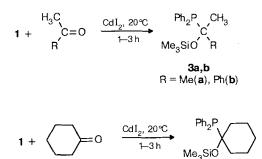


Table 1 presents physicochemical characteristics, data of elemental analysis, yields and spectral parameters of the compounds synthesized. Phosphines 2 react with lithium tetrachloropalladate in methanol to form corresponding complexes (4).

3c

$$2 \operatorname{Ph}_{2}\operatorname{PCH}(R)\operatorname{OSiMe}_{3} + \operatorname{Li}_{2}\operatorname{PdCl}_{4} \xrightarrow{20^{\circ}\mathrm{C}}_{-2 \operatorname{LiCl}}$$

$$2 c, d$$

$$\longrightarrow [\operatorname{Ph}_{2}\operatorname{PCH}(R)\operatorname{OSiMe}_{3}]_{2}\operatorname{PdCl}_{4}$$

$$4 a, b$$

R = i-Pr(**a**), Ph(**b**)

Compounds **4** were used as catalysts in cross-coupling reactions.

Experimental

All procedures were carried out in dry argon. ³¹P NMR spectra were recorded using a Varian FT-80 A spectrometer. The external standard was H_3PO_4 (85 %).

Diphenyl[alkyl(aryl)trimethylsiloxymethyl]phosphines (2a-e, 3a-c). General procedure. Aldehyde or ketone (4 mmol) was added to 4 mmol (0.23 g) of (trimethylsilyl)diphenylphosphine (in the case of ketones 0.04 mmol (0.0146 g) of cadmium iodide was also added to the reaction mixture). After stirring for 1-3 h at ca. 20°C the mixture was distilled in vacuo to obtain phosphines 2a-e or 3a-c.

Bis[diphenyl(isopropyltrimethylsioxymethyl)phosphine]palladium(II)chloride (4a). A solution of lithium tetrachloropalladate (4 mmol) in methanol (2 mL) was added dropwise to a mixture of phosphine 2c (0.8 mmol) dissolved in methanol (2 mL) to obtain 4a, which was recrystallized from hexane. Yield 78 %, m. p. 90 °C. ³¹P NMR (δ , ppm): 9.4. Found (%): (C) 54.39, (H) 6.23. C₃₈ H₅₄O₂C₁₂P₂PdSi. Calculated (%): 54.51 (C), 6.45 (H).

Bis[diphenyl(phenyltrimethylsiloxy)methylphosphine]palladium(II)chloride (4b). Procedures for complexes 4b and 4a are the same. The yield is 94%, m. p. $104^{\circ}C.^{31}P$ NMR (δ , ppm) 19.2. Found (%): 73.01 (C), 7.14 (H). C₄₆H₅₄O₂C₁₂P₂PdSi₂. Calculated (%): 72.83 (C), 7.02 (H)

References

- 1. W. S. Knowles and M. J. Sabacky, J. Am. Chem. Soc., 1977, 97, 2567.
- 2. G. Escudie, C. Couret, J. Dubac, J. Cavezzan, and G. Satge, *Tetrahedron Lett.*, 1979, 37, 3507.
- 3. G. Escudie, C. Couret, S. Thaoubane, and G. Dubac, *Phosphorus and Sulf.*, 1984, **20**, 87.