

S0040-4039(96)00269-9

Selective C-N Bond Cleavage of 4-Silyl-substituted 1,2-Thiazetidine 1,1-Dioxides with EtAlCl₂: Stereospecific Formation of (E)-Vinylsulfonamides

Tadashi Kataoka,* Tetsuo Iwama and Atsuko Takagi

Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan

Abstract: Monosilylation of 1,2-thiazetidine 1,1-dioxides (β -sultams) furnished ($3R^*$, $4S^*$)-4-silylated β -sultams stereoselectively. Treatment of 4-silylated β -sultams with a Lewis acid caused the selective C-N bond cleavage because of the β -silyl stabilization against the resultant carbenium ion followed by desilylation to provide (E)-vinylsulfonamides stereospecifically.

Vinylsulfonamides have been utilized in various reactions such as aziridine formation,¹ 1,3-dipolar cycloadditions² and Michael additions.³⁻⁷ However, little attention has been paid to the synthesis of vinylsulfonamides.^{3,8-11} We previously reported that the selective C-S bond cleavage of 1,2-thiazetidine 1,1dioxides (β -sultams) bearing alkyl or aryl substituents at C-3 and C-4 was achieved by treatment with a Lewis acid to provide aryl ketones, aldehydes,¹² trans-1,2,3-oxathiazolidine 2-oxides and *cis*-aziridines.¹³ In this study, we discovered that reactions of 4-silyl-substituted β -sultams with EtAlCl₂ provided (*E*)-vinylsulfonamides stereospecifically *via* the processes of C-N bond cleavage and desilylation. Atkins and Burgess reported that treatment of a β -sultam with Et₃N afforded a vinylsulfonamide.¹¹ However, our finding is, in fact, the first stereospecific C-N bond cleavage of a β -sultam ring due to anchimeric assistance of the silyl group in acidic media. Müller and Otto reported that treatment of 4-silylated β -sultams with tetrabutylammonium fluoride in THF-acetic acid furnished desilylated β -sultams without ring destruction.¹⁴ In contrast, the use of EtAlCl₂ as a reagent caused a ring-opening reaction with elimination of the silyl group. In this communication, we describe that the selective C-N bond cleavage of 4-silylated β -sultams with EtAlCl₂ followed by desilylation provides (*E*)-vinylsulfonamides stereospecifically.

$$\begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ 1 \end{array} \xrightarrow{SO_{2}} R^{1} \\ R^{3} \\ 1 \end{array} \xrightarrow{(1) \ LDA, \ THF, \ -78^{\circ}C}_{2) \ SICl} \\ R^{2} \\ R^{3} \\ R^{3} \\ 2 \end{array} \xrightarrow{(R^{1} \ SO_{2} \ SO_{2}$$

4-Mono- and 4,4-di-silylated β-sultams were prepared as shown in Scheme 1. 3-Aryl-β-sultams 1 were treated with LDA at -78°C in THF followed by silylation with ^tbutyldimethylsilyl (TBDMS) chloride or trimethylsilyl (TMS) chloride to give 4-mono- or 4,4-di-silylated β-sultams 2 or 3 (Table 1). Stereoselective monosilylation of 4-nonsubstituted β-sultams 1a-c was achieved by use of TBDMSCl as a silylating reagent (entries 1-3).^{14,15} Silylation of 4-substituted β-sultams also proceeded stereoselectively although the starting

Entry		ß-Su R ¹	ltam 1 R ²	R ³	LDA (equiv.)	Electrophile Si(equiv.)	Conditions	Products (%yield) ^a
1	1a	℃ ₆ H ₁₁	Ph	н	2.0	TBDMS(1.5)	-78°C, 2h	2a(98)
2	1b	^c C ₆ H ₁₁	<i>p</i> -MeC ₆ H₄	н	2.0	TBDMS(1.5)	-78°C, 2h	2b (93)
3	1c	^c C ₆ H ₁₁	p-BrC ₆ H₄	н	2.0	TBDMS(1.5)	-78°C, 2h	2c(87)
4	1d	℃ ₆ H ₁₁	Ph	Мe	2.0	TMS(2.0)	-78°C - r.t., 18h	2d (88)
5	1d	℃ ₆ H ₁₁	Ph	Мe	2.0	TBDMS(2.0)	-78°C - r.t., 20h	2e (53)
6	1e	^с С ₆ Н ₁₁	Ph	Et	2.0	TMS(2.0)	-78°C - r.t., 18h	2f (72)
7	1e	℃ ₆ H ₁₁	Ph	Et	2.0	TBDMS(2.0)	-78°C - r.t., 22h	2g(44)
8	1f	"Bu	Ph	Ph	2.0	TMS(2.0)	-78°C - r.t., 18h	2h(68)
9	1g	℃ ₆ H ₁₁	¹ Bu	н	2.0	TBDMS(1.5)	-78°C, 2h	2i (92)
10 ⁶	1ĥ	^c C ₆ H ₁₁	¹ Bu	Ph	2.0	TMS(2.0)	-78°C - r.t., 16h	2j (54) ^c
11	1a	^c C ₆ H ₁₁	Ph	н	3.0	TMS(3.0)	-78°C - r.t., 20h	3a(92)
12	1i	^c C ₆ H ₁₁	<i>p</i> -MeOC ₆ H₄	н	3.0	TMS(3.0)	-78°C - r.t., 20h	3b (88)
13	1c	^c C ₆ H ₁₁	p-BrC ₆ H₄	н	3.0	TMS(3.0)	-78°C - r.t., 20h	3c (84)

 Table 1
 Synthesis of 4-Silyl-substituted B-Sultams 2 and 3.

^aIsolated yield unless otherwise noted. ^bSilylation was carried out twice. ^cCrude yield.

materials used were isomeric mixtures (entries 4-8). Disilylation proceeded smoothly by use of TMSCl as a silylating reagent (entries 11-13). 3-^tButyl-4-silyl-B-sultam 2i was obtained stereoselectively in 92% isolated yield by treatment of 1g with 2.0 equiv. of LDA and then 1.5 equiv. of TBDMSCl at -78°C for 2 hours in THF (entry 9). Silylation of 1h was carried out twice (2.0 equiv. of LDA and then 2.0 equiv. of TMSCl at -78°C - r.t. for 16 hours in THF) to give 3-^tbutyl-4-silyl-B-sultam 2j in 54% crude yield (entry 10). B-Sultam 2e was also obtained in 84% yield regardless of the order of silylation and alkylation by the stereoselective methylation of 2a (Scheme 2).

Scheme 3

Reactions of silylated 3-aryl- β -sultams 2 with EtAlCl₂ were carried out in dry toluene at room temperature under a nitrogen atmosphere (Scheme 3, Table 2).¹⁶ 4-Monosilylated β -sultams 2a-h, which possess (3R*, 4S*)-configuration,^{14,15} stereospecifically provided the corresponding (E)-styrylsulfonamides (E)-4a-f in good to high yields, respectively. All of the vic-olefinic protons of (E)-4a-c showed trans J values in ¹H NMR spectra. The geometry of (E)-4d-f was determined by the NOE technique.¹⁷ Reactions of TMSsubstituted β -sultams 2d and 2f were slow and a considerable amount of the starting materials (26% of 2d and 22% of 2f, respectively) was recovered in spite of the use of 4.0 equiv. EtAlCl₂ (entries 4 and 6). A TBDMS group was more effective than a TMS substituent for the C-N bond cleavage. We also examined reactions of 3-^tbutyl-4-silyl- β -sultams 2i and 2j with EtAlCl₂. Treatment of 2i with 1.5 equiv. of EtAlCl₂ at 40°C for 23 hours furnished N-dealkylated (E)-vinylsulfonamide (E)-5a as a major product in 65% yield together with 21% of (E)-4g (entry 9). (E)-Vinylsulfonamide (E)-4h¹⁷ was furnished in 54% yield from 2j (2.0 equiv. of EtAlCl₂ at r.t. for 28 hours, entry 10).

Entry		B1	R2	апі д3	Si	(equiv.)	Time(h)	~	(%vield) ^b	
•						(04010.)				
1	2a	C6H11	Ph	н	TBDMS	2.0	26	н	(<i>E</i>)-4a(93)	
2	2b	^с С ₆ Н ₁₁	<i>p</i> -MeC ₆ H₄	н	TBDMS	2.0	24	н	(E)-4b(89)	
3	2C	^c C ₆ H ₁₁	p-BrC ₆ H ₄	н	TBDMS	2.0	28	н	(E)-4c(91)	
4	2d	^c C ₆ H ₁₁	Ph	Мe	TMS	4.0	24	Мe	(E)-4d(64), 2d(26)	
5	2e	℃ ₆ H ₁₁	Ph	Мe	TBDMS	2.0	24	Me	(E)-4d(92)	
6	2f	°C6H11	Ph	Et	TMS	4.0	24	Et	(E)-4e(70), 2f(22)	
7	2g	C ₆ H ₁₁	Ph	Et	TBDMS	2.0	24	Et	(E)-4e(93)	
8	2h	"Bu	Ph	Ph	TMS	2.0	30	Ph	(E)-4f(68), 1f(12)	
9 ^c	21	℃ ₆ H ₁₁	^t Bu	н	TBDMS	1.5	23	н	(E)-4g(21), (E)-5a(65)	
10	2j	^c C ₆ H ₁₁	^t Bu	Ph	TMS	2.0	28	Ph	(E)-4h(54)	
11	3a	^c C ₆ H ₁₁	Ph	-	-	3.0	35	TMS	(E)-41(89)	
12 ^d	3a	°C6H11	Ph	-	-	2.0	8	TMS	(E)-4i(62), (E)-5b(38)	
13	3b	°C6H11	<i>p</i> -MeOC ₆ H₄	-	-	2.0	36	TMS	(E)-4j(71), (Z)4j(21)	
14	3c	C6H11	p-BrC ₆ H ₄	-	-	2.0	34	TMS	(E)-4k(90)	

Table 2 Reactions of 4-Silyl-substituted β-sultams 2 and 3 with EtAlCl₂.

^aThe geometry was determined from the coupling constant between vic-olefinic protons in ¹H NMR or by NOE technique . ^bIsolated yield. ^cReaction temperature: 40°C. ^dAlCl₃ was used instead of EtAlCl₂.

Stereospecific formation of (E)-vinylsulfonamides (E)-4 would be explained as shown in Scheme 4. A silylated β -sultam 2 predominantly exists in a conformation (I) where both an aryl substituent and a silyl group are *pseudoequatorial*,^{14,15} and a nitrogen atom and the *pseudoequatorial*-oriented silyl group are *anti*-periplanar. The coordination of EtAlCl₂ to the sulfonyl group would cause the selective C-N bond cleavage to generate a carbenium ion intermediate III, which is stabilized by the β -silyl substituent. The distortion of a four-membered ring bearing a TBDMS substituent would promote the ring-opening with EtAlCl₂ more than that of a β -sultam having a TMS group. The elimination of the silyl group from the cation III affords an (E)-4 stereospecifically. However, it could not be excluded that (E)-4 which is thermodynamically more stable than (Z)-4 is formed via a cationic intermediate IV, which is free from anchimeric assistance of the silicon atom.

Next, we carried out reactions of 4,4-disilyl-substituted β -sultams 3. Treatment of 4,4-disilylated β -sultam 3a with 3.0 equiv. of EtAlCl₂ for 35 hours stereospecifically provided (*E*)- α -silylstyrylsulfonamide (*E*)-4i in 89% yield (Table 2, entry 11). Although reaction time was shortened by use of 2.0 equiv. of AlCl₃ instead of EtAlCl₂ an *N*-dealkylated (*E*)-styrylsulfonamide (*E*)-5b was formed in 38% yield as a by-product together with 62% of (*E*)-4i (entry 12). From the reaction of 3b, (*E*)-4j was obtained in 71% yield accompanied by 21% of the geometrical isomer (*Z*)-4j, whose geometry was determined by the NOE technique (entry 13).¹⁷ (*E*)-4k was obtained exclusively in 90% isolated yield by treatment of 3c with 2.0 equiv. of EtAlCl₂ (entry 14).

Formation of (Z)- α -silylstyrylsulfonamide (Z)-4j is explained as follows (Scheme 5): A cationic intermediate A, generated stereospecifically from 4.4-disilylated B-sultam owing to anchimeric assistance of the silvl group via a similar process as shown in Scheme 4, provides an (E)-4. When the cation (X=MeO) is sufficiently stabilized by the electromeric assistance of the p-methoxy substituent, the internal 60° rotation of A partially takes place to avoid the steric interaction between the silyl and aryl groups, and A changes into the more stable conformer B. The elimination of the silyl group, which is anti-coplanar with p-orbital of the cation, gives thermodynamically more stable (Z)- α -silylstyrylsulfonamide (Z)-4j. In the case of X=H or Br, since the cation A is less stable, the B-silyl group is eliminated before the internal rotation to accomplish stereospecific formation of (E)-styrylsulfonamides (E)-4. From these results, it is suggested that (E)styrylsulfonamides are furnished stereospecifically via the intermediate III, not IV, (Scheme 4) due to anchimeric assistance of the silvl group.

REFERENCES AND NOTES

- 1. Aumaitre, G.; Chanet-Ray, J.; Durand, J.; Vessière, R.; Lonchambon, G. Synthesis, 1983, 816-821.
- 2. Chanet-Ray, J.; Vessière, R.; Zéroual, A. Heterocycles, 1987, 26, 101-108.
- 3.
- Distler, H. Angew. Chem., 1965, 77, 291-302. Hasegawa, K.; Hiraoka, S. Bull. Chem. Soc. Jpn., 1972, 45, 1567-1568. 4.
- 5. Hasegawa, K.; Sasaki, T.; Hiraoka, S. Bull. Chem. Soc. Jpn., 1973, 46, 696-698.
- Maindron, M.; Lacoste J.; Vessière, R. J. Photochem. Photobiol., A: Chem., 1988, 44, 303-315. 6.
- 7. Morris, J.; Wishka, D. G. J. Org. Chem., 1991, 56, 3549-3556.
- Matlack, A. S. J. Org. Chem., 1958, 23, 729-731. 8.
- 9. Oliver, J. E.; DeMilo, A. B. Synthesis, 1975, 321-322.
- Mladenova, M.; Gaudemar-Bardone, F. Phosphorous Sulfur, 1991, 62, 257-257. Atkins, Jr., G. M.; Burgess, E. M. J. Am. Chem. Soc., 1967, 89, 2502-2503. 10.
- 11.
- 12.
- Kataoka, T.; Iwama, T. Tetrahedron Lett., 1995, 36, 245-258. Kataoka, T.; Iwama, T. Tetrahedron Lett., 1995, 36, 5559-5562. 13.
- 14. Müller, M.; Otto, H.-H. Arch. Pharm. (Weinheim, Ger.), 1991, 324, 15-17.
- Müller, M.; Meyle, E.; Paulus, E. F.; Plagge H.; Otto, H.-H. Liebigs Ann. Chem., 1989, 975-983. 15.
- 16. Typical procedure for the reaction of 2a with EtAlCl₂ as a representative.____ To a stirred solution of 4silvlated β -sultam 2a (38 mg, 0.1 mmol) in dry toluene (1 cm³) was added 2.0 equiv. of EtAlCl₂ in hexane at room temperature under a nitrogen atmosphere. After 26 h, saturated aqueous NaHCO3 (3 cm^3) was added to the reaction mixture. Inorganic precipitate was filtered off through celite and washed with EtOAc (5 cm³). The organic layer was separated, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by preparative TLC on silica gel eluting with hexane-EtOAc (4:1 v/v) to give (E)-vinylsulfonamide (E)-4a (25 mg, 93%), m.p. 110-113°C; ¹H NMR (400 MHz; CDCl₃) δ: 1.13-1.36 (5H, m), 1.54-1.57 (1H, m), 1.68-1.71 (2H, m), 1.95-1.97 (2H, m), 3.21-3.23 (1H, m, NCH), 4.67 (1H, brs, NH), 6.80 (1H, d, J = 15.6 Hz, 1-H), 7.34-7.42 (3H, m, ArH), 7.47 (1H, d, J =15.6 Hz, 2-H), 7.44-7.50 (2H, m, ArH); ¹³C NMR (400 MHz, CDCl3) 8: 24.7 (t), 25.1 (t), 34.3 (t), 52.6 (d), 126.5 (d), 128.1 (d), 129.0 (d), 130.6 (d), 132.7 (s), 140.4 (d); MS (m/z): 265 (M⁺), 144 (base); IR v_{max}(KBr)/cm⁻¹: 3270 (NH), 1320, 1145 (SO₂); Anal.Calcd for C₁₄H₁₉NO₂S: C, 63.37; H, 7.22; N, 5.28. Found: C, 63.34; H, 7.15; N, 5.34.
- 17. The configuration of (E)-4d-f,h, j and (Z)-4j was determined by the NOE measurement.

(Received in Japan 6 January 1996; revised 31 January 1996; accepted 8 February 1996)