New Aspects in the Regioselective Functionalization of Furans. Synthesis of Tri- and Tetrasubstituted Furan Derivatives.

Carmen Domínguez, Aurelio G. Csáky and Joaquín Plumet*

Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain.

(Received in UK 28 October 1991)

Key Words: Furan functionalization; imidazolidine; oxazoline; electrophilic aromatic substitution; ${}^{1}J({}^{13}C-H)$.

Abstract: Application of directed ortho metalation reaction and electrophilic aromatic substitution allows for the regioselective synthesis of tri- and tetrasubstituted furans, thus superseding classical *de novo* furan construction modes.

Furan derivatives are of increasing interest in organic synthesis¹ as a direct consequence of the easiness in their transformation into a wide range of highly functionalized open chain and cyclic structures². However, although the construction of mono- and disubstituted furan moieties has received a great deal of attention in recent years³, the number of syntheses completed for tri- and tetrasubstituted furans are at present fairly meagre, and a general protocol is still lacking⁴. We wished to develop a regioselective functionalization of the furan moiety based on the tandem directed ortho metalation reaction⁵-electrophilic aromatic substitution⁶, using rather inexpensive commercial furan derivatives as starting materials, with the aim of superseding classical *de novo* furan construction modes.

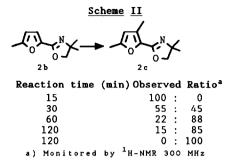
In order to prepare 2,3,5-trisubstituted furan derivatives, and taking into account both the wide accessibility of furfural as well as the well known ortho-directing ability of the imidazolidine moiety, together with the mild reaction conditions described⁷ for its back-conversion into the aldehyde functionality⁸, we decided, at first, to examine the β -functionalization of furylimidazolidine 1b (Table 1) in the hope of attaining good levels of β -metalation in the presence of the methyl C5-blocking substituent, which would preclude the furan oxygen overriding effect observed⁷ in the metalation reaction of 1a.

Table 1

Entry	Solvent	Base	Temp.	React. time	Recovered
			(°C)	(min)	<u>1b</u> (%)
1	THF	BuLi	-78	60	90
2	THF-TMEDA	BuLi	-78	60	75
3	Et 20	BuLi	-78	60	70
4	Et 20-TMEDA	BuLi	-78	60	65
5	DME	BuLi	-78	60	75
6	DME-TMEDA	BuLi	-78	60	80
7	Hexane	BuLi	-78	60	50
8	Hexane-TMEDA	BuLi	-78	60	
9	THF	BuLi	-23	60	50
10	THF	BuLi	-78	120	70
11	THF	MeLi	-78	60	
12	THF	BuLi	-78	60	

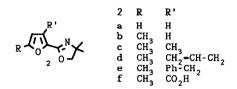
However, to our amaze, unreacted 1b together with polymeric material was recovered in the range of experiments shown in Table 1, with no β -lithiated product being detected after MeI quenching.

At this stage the values of ${}^{1}J({}^{13}C3-H)$ coupling constants of furylimidazolidines 1 was examined (Scheme I). A comparison of 1a with 1b reveals a strong diminution in the


Scheme 1

coupling constant value for the latter, which, in turn, could be associated with a decrease in kinetic acidity⁹. Therefore, in a first attempt to circumvent this drawback, we synthesized furylimidazolidine 1c. This showed an enhanced coupling constant value with respect to 1b, which, however, was found not to be enough for a successful β -metalation in any of the aforementioned conditions. Last, we prepared the bromoderivative 1d which showed a coupling constant value of the same range than 1a. However, treatment of 1d with BuLi in THF followed by MeI gave rise to furylimidazolidine 1e, as a consequence of preferential Li-Br interchange, thus providing a novel access to 2,4,5-trisubstituted furan derivatives.

In the light of these results, we decided to replace the imidazolidine moiety by the oxazoline one, which, albeit its more powerful ortho-directing character⁵, requires somewhat elaborated deprotection techniques¹⁰ in order to recover the aldehyde functionality⁸.


Nevertheless, in a similar fashion as observed for furylimidazolidines, and in spite of the described efficiency¹¹ of the oxazoline moiety in the β -functionalization of

compound 2a, no C3-lithiation of the C5 methyl analogue 2b took place following literature conditions¹¹ (Scheme II). However, the use of an excess of base together with

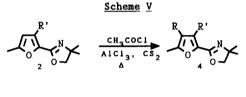
an eight-fold time increase allowed for the obtainment of furyloxazoline 2c. The result has been extended to the synthesis of compounds 2d-f, thus allowing for the synthesis of 2,3,5-trisubstituted furan derivatives (Scheme III).

Scheme III

The observed reactivity diminution against β -lithiation on going from furyloxazoline 2a to 2b could be ascribed, analogously to the case of furylimidazolidines 1a-d, to a kinetic acidity diminution in the presence of the C5 methyl substituent. As a matter of fact, an inspection of ${}^{1}J({}^{13}C3-H)$ values reveals a decrease in the coupling constant value for compound 2b (177.0 Hz) as compared with 2a (183.3 Hz). In this case, however, the strong ability of the oxazoline system as directed metalation group did not prevent the reaction, although stronger conditions were required.

On the other hand, synthesis of 2,4,5-trisubstituted furans 3 was performed by functionalization of C4 in compound 2b via electrophilic aromatic substitution⁶, in spite of the strong electron-withdrawing effect of the oxazoline moiety and its proneness to N-quaternization. Therefore, treatment with the appropriate electrophile in the presence of an excess of AlCl₃ as catalyst in CS₂ or CHCl₂ solution afforded furyloxazolines 3a-c (Scheme IV).

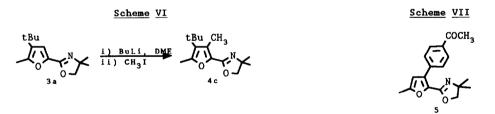
Scheme IV


As inferred from the inspection of ${}^{1}J({}^{13}C3-H)$ values for compounds 3a-c and 3d, the introduction of an alkyl substituent at C4 further diminishes the acidity of H3, whereas the presence of electron withdrawing substituents raises up the coupling constant value, which, in the case of the bromo-derivative 3c, attains analogous range to that of compound 2a.

Notwithstanding the enhanced H3 kinetic acidity of compound 3c, further

functionalization at C4 can be carried out by selective Li-Br interchange with ^tBuLi, followed by treatment with electrophiles, as exemplified for the synthesis of compound 3d, thus widening the scope of the procedure¹².

Finally, tandem application of ortho-directed metalation and electrophilic aromatic substitution in furyloxazolines allows for the regioselective synthesis of 2,3,4,5-tetrasubstituted furan derivatives. Naturally, the order of application of subsequent reaction steps should ensure the chemical compatibility of the substituents introduced in the first one with the reaction conditions required for the second.


Several examples illustrate the proposed methodology. Therefore, treatment of furyloxazolines 2c,d -obtained via β -metalation of compound 2b- with acetyl chloride in the presence of an excess of AlCl₃ in CS₂ solution allows for the synthesis of compounds 4a,b (Scheme V). It has to be pointed out that, in these cases, an inversion of the

2 4 R R' c a $COCH_3 CH_3$ d b $COCH_3 CH_2$ -CH-CH₂

reaction sequence is not possible, as a consequence of the chemical lability of the acetyl group against metalating agents.

On the other hand, treatment of compound 3a -obtained by electrophilic aromatic substitution of furyloxazoline 2b- with BuLi in DME, followed by CH₃I quenching, allowed for the synthesis of compound 4c (Scheme VI).

In this case, due to the diminished kinetic acidity of compound **3a** in comparison with furyloxazolines **2a** and **2b** (Scheme III), the metalation step had to be increased up to 4 h.

However, a limitation was encountered with furyloxazoline 2e, which upon treatment with acetyl chloride in the aforementioned conditions, successfully used for furan-C4 functionalization of compounds 2c,d, gave rise to 2-[3-(4-acetylbenzyl)-5-methyl-2-furyl]-4,4-dimethyloxazoline 5 (Scheme VII).

In summary, the results show that, in the presence of a methyl substituent at C5, the kinetic acidity of C3, inferred by observation of ${}^{1}J({}^{13}C3-H)$, diminishes to an extent that prevents lithiation of furylimidazolidines and requires forcing conditions for the metalation of furyloxazolines. As far as we know, the only precedent in the literature dealing with the β - functionalization of a C5-substituted furyloxazoline⁵¹ is that of

4,4-dimethyl-2-(5-trimethylsilyl-2-furyl)oxazoline.

As a matter of fact, a survey of literature data⁵ reveals the occurrence of analogous drawbacks in the presence of methyl substituents also in carbocyclic chemistry. Thus, the lithiation of 4,4-dimethyl-2-(3-methyl-4-methoxyphenyl)oxazoline, which has been reported¹³ to yield a sole regioisomer due to steric considerations¹⁴, is, to our knowledge, a consequence of the decrease of kinetic acidity at C2 in comparison with C6 due to the presence of the methyl substituent at C3¹⁵.

At any rate, the procedure reported provides a double means of synthesizing highly functionalized furan systems, starting either from compounds 2 or 3, depending on the ability of the present functionality to withstand the reaction conditions used in each case.

EXPERIMENTAL

General. ¹H N.mr. spectra were recorded on a Varian FX-300 spectrometer operating at 300 MHz. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. M.p.'s were recorded on a Büchi 512 apparatus, and are uncorrected.

Synthesis of Furylimidazolidines (1a-c). General Procedure

The corresponding aldehyde (104 mmol) and 10.4 g (118 mmol) of N,N'-dimethylethylenediamine were refluxed in benzene solution for 12 h, following the method of Carpenter and Chadwick⁷ for compound 1a.

The following imidazolidines were prepared by this method.

1,3-Dimethyl-2-(5- methyl-2-furyl)imidazolidine (1b)

Reaction with 11.5 g of 5-methylfurfural gave compound 1b in 80% yield (cil): IR (thin film) 1575, 1500, 820 cm⁻¹; ¹H N.m.r (CDCl₃) δ 2.28 (s, 6H, CH₃N), 2.30 (s, 3H, CH₃-furan), 2.54 - 2.56 (m, 2H, CH₂), 3.34 - 3.36 (m, 2H, CH₂), 3.46 (s, 1H, CH imidaz.), 5.90, 5.91 (d, J₃₄= 2.9 Hz, 1H, H4 furan), 6.25, 6.26 (d, J₃₄= 2.9 Hz, 1H, H3 furan); ¹³C N.mr.(CDCl₃) δ 13.59 (CH₃-furan), 39.78 (CH₃N), 52.94 (CH₂N), 85.05 (CH imidaz.), 105.55 (J_{CH}= 171.2 Hz, C4 furan), 110.90 (J_{CH}= 172.3 Hz, C3 furan), 150.06 (C2 furan), 152.79 (C5 furan). Anal. Calcd for C₁₀H₁₆N₂O: C, 66.63; H, 8.95. Found C, 66.71; H, 9.01.

<u>1,3-Dimethyl-2-(5-diethoxymethyl-2-furyl)imidazolidine</u> (1c)

Reaction with 20.8 g of 5-diethoxymethyl-2-furancarboxaldehyde^{8b} gave compound 1c in 75% yield (oil): IR (thin film) 1580, 1500, 850 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.21 (q, J = 6.9 Hz, 6H, CH₃CH₂), 2.29 (s, 6H, CH₃N), 2.59 - 2.60 (m, 2H, CH₂N), 2.59 - 3.31 (m, 2H, CH₂N), 3.59 (t, J = 6.9 Hz, 4H, CH₂O), 3.67 (s, 1H, CH imidaz.), 5.42 (s, 1H, CH(OEt)₂), 6.37, 6.38 (d, J₃₄= 3.3 Hz, H3 furan), 6.39, 6.41 (d, J₃₄= 3.3 Hz, H4 furan); ¹³C N.m.r (CDCl₃) δ 14.89 (<u>CH₃CH₂</u>), 39.52 (CH₃N), 52.42 (CH₂N), 60.86 (CH₂O), 84.04 (CH imidaz.), 96.05 (<u>C</u>H(OEt)₂), 108.25 (J_{CH}= 180.3 Hz, C4 furan), 109.09 (J_{CH} = 173.2 Hz, C3 furan), 151.89 (C2 furan), 152.92 (C5 furan). Anal. Calcd for C₁₄H₂₄N₂O₃: C, 62.66; H, 9.01. Found: C, 62.84; H, 9.14.

1,2-Dimethyl-2-(4-bromo-5-methyl-2-furyl)imidazolidine (1d)

Reaction with 19.6 g of 4-bromo-5-methyl-2-furancarboxaldehyde^{4b} gave compound 1d in 80% yield (oil): IR (thin film) 1570, 1510, 800 cm⁻¹; ¹H N.m.r (CDCl₃) δ 2.28 (s, 6H, CH₃N), 2.29 (s, 3H, CH₃-furan), 2.56 - 3.34 (m, 4H, CH₂), 3.46 (s, 1H, CH imidaz.), 6.36 (s, 1H, H3 furan); ¹³C N.m.r (CDCl₃) δ 12.35 (CH₃-furan), 39.68 (CH₃N), 52.96 (CH₂N),

84.59 (CH imidaz.), 96.00 (C4 furan), 113.55 (J_{CH} = 179.3 Hz, C3 furan), 149.91 (C5 furan), 150.69 (C2 furan). Anal. Calcd for $C_{10}H_{14}BrN_2O$: C, 46.53; H, 5.47.Found: 46.68; H, 5.62.

1,3-Dimethyl-2-(4,5-dimethyl-2-furyl)imidazolidine (1e).

To a solution of 130 mg (0.5 mmol) of imidazolidine 1d in 2 mL of anhydrous THF at -78 °C was added dropwise 0.3 mL (0.5 mmol) of a 1.6 M solution of BuLi in hexane. After 15 min of stirring, CH₃I (0.5 mL) was added and the reaction mixture was stirred for a further 0.5 h at -78 °C and then for 12 h at room temperature. The solvent was then removed under reduced pressure, and the product extracted from the residue with ether (3 x 20 mL). The ether extracts were washed with brine, dried (MgSO₄) and evaporated. The residue was chromatographed on silica gel with 1:1 hexane/ethyl acetate as the eluent, giving 75 mg of 1e (80%) as a light yellow oil: IR (thin film) 1600, 1510, 790 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.87 (s, 3H, CH₃-C4 furan), 2.28 (s, 6H, CH₃N), 2.20 (s, 3H, CH₃-C5 furan), 2.54 - 2.56 (m, 2H, CH₂N), 3.34 - 3.36 (m, 2H, CH₂N), 3.56 (s, 1H, CH imidaz.), 6.27 (s, 1H, H3 furan); ¹³C N.m.r (CDCl₃) δ 11.63 (CH₃-C4 furan), 13.63 (CH₃-C5 furan), 13.63 (CH₃-C5 furan), 13.01 (C2 furan). Anal. Calcd for C₁₁H₁₈N₂O: C, 68.01; H, 9.34. Found: C, 68.31; H 9.55.

4,4-Dimethyl-2-(5-methyl-2-furyl)oxazoline (2b).

To a solution of 900 mg (5.45 mmol) of oxazoline $2a^{11}$ in 20 mL of anhydrous Et₂O at -78 °C was added dropwise 2.2 mL (5.5 mmol) of a 2.5 M solution of BuLi in hexane. After stirring for 15 min at -78 °C and at 0 °C for 30 min, CH₃I (3.5 mL) was added and the reaction mixture was stirred for a further 0.5 h at -78 °C and then for 12 h at room temperature. The solvent was then removed under reduced pressure, and the product extracted from the residue with ether (3 x 50 mL). The ether extracts were washed with brine, dried (MgSO₄) and evaporated. The residue was chromatographed on silica gel with 5:5:1 hexane/chloroform/ethyl acetate as the eluent, giving 780 mg of 2b (80%) as a light yellow oil: IR (thin film) 1680, 1600, 1580, 880, 730 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.36 (s, 6H, CH₃-oxazol.), 2.35 (s, 3H, CH₃-furan), 4.05 (s, 2H, CH₂), 6.05 (d, J₃₄= 3.0 Hz, 1H, H3 furan), 6.80 (d, J_{CH}= 3.0 Hz, 1H, H4 furan); ¹³C N.m.r (CDCl₃) δ 13.46 (CH₃-furan), 28.04 (CH₃-oxazol.), 67.27 (C4 oxazol.), 78.73 (C5 oxazol.), 107.49 (J_{CH}= 175.0 Hz, C4 furan), 115.04 (J_{CH}= 177.03, C3 furan), 141.14 (C2 furan), 154.18 (C5 furan), 155.45 (C=N). Anal. Calcd for C₁₀H₁₃NO₂: C, 67.02; H, 7.31. Found: C, 67.16; H 7.52.

Synthesis of Furyloxazolines (2c-f) and (4c). General Procedure

To a solution of the corresponding oxazoline (1.39 mmol) in 5 mL of anhydrous DME at -78 °C was added dropwise 0.63 mL (1.6 mmol) of a 2.5 M solution of BuLi in hexane. After stirring for 2 h at -78 °C, an excess of the corresponding electrophile (1.5 mL) was added and the reaction mixture was stirred for a further 0.5 h at -78 °C and then for 12 h at room temperature. The solvent was then removed under reduced pressure, and the product extracted from the residue with ether (3 x 50 mL). The ether extracts were washed with brine, dried (MgSO₄) and evaporated. The residue was percolated on silica gel with 1:1 hexane/ethyl acetate as the eluent.

The following oxazolines were prepared by this method.

4.4-Dimethyl-2-(3.5-dimethyl-2-furyl)oxazoline (2c)

Reaction of 2b with $CH_{3}I$ gave 230 mg of compound 2c (85%) as a light yellow oil: IR (thin film) 1675, 1590, 1550, 850, 750 cm⁻¹; ¹H N.mr. (CDCl₃) δ 1.35 (s, 6H,

CH₃-oxazol.), 2.21 (s, 3H, CH₃-C3 furan), 2.28 (s, 3H, CH₃-C5 furan), 4.03 (s, 2H, CH₂), 5.91 (s, 1H, H4 furan); ¹³C N.m.r (CDCl₃) δ 10.89 (CH₃-C3 furan), 13.51 (CH₃-C5 furan), 28.22 (CH₃-C4 oxazol.), 66.67 (C4 oxazol.), 78.64 (C5-oxazol.), 110.98 (C4 furan), 127.33 (C3 furan), 137.08 (C2 furan), 154.28 (C5 furan), 155.43 (C=N). Anal. Calcd for C₁₁H₁₅NO₂: C, 68.37; H, 7.82. Found: C, 68.59; H, 7.91.

2-(3-Allyl-5-methyl-2-furyl)-4,4-dimethyloxazoline (2d)

Reaction of 2b with allyl bromide gave compound 2d in 70% yield (oil): IR (CCl₄) 1670, 1650, 1620, 1550, 930 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.36 (s, 6H, CH₃-oxazol.), 2.30 (s, 3H, CH₃-furan), 3.44 - 3.46 (d, J = 6.6 Hz, CH₂-furan), 4.03 (s, 2H, CH₂ oxazol.), 5.04 (m, 2H, CH₂=), 5.85 (m, 1H, CH=), 5.96 (H4 furan); ¹³C N.m.r (CDCl₃) δ 13.79 (CH₃-furan), 28.26 (CH₃-oxazol.), 29.68 (CH₂-furan), 67.78 (C4 oxazol.), 78.77 (C5 oxazol.), 109.80 (C4 furan), 115.55 (CH₂=), 129.78 (C3 furan), 136.01 (CH=), 137.05 (C2 furan), 154.69 (C5 furan), 155.35 (C=N). Anal. Calcd for C₁₃H₁₇NO₂: C, 71.20; H, 7.81. Found: C, 71.36; H, 7.91.

2-(3-Benzyl-5-methyl-2-furyl)-4,4-dimethyloxazoline (2e)

Reaction of 2b with benzyl bromide gave compound 2e in 75% yield (oil): IR (CCl₄) 1720, 1650, 1550, 710 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.40 (s, 6H, CH₃-oxazol.), 2.27 (s, 3H, CH₃-furan), 4.06 (s, 2H, CH₂ oxazol.), 4.10 (s, 2H, CH₂-Ph), 5.85 (s, 1H, H4 furan), 7.20-7.29 (m, 5H, Ph); ¹³C N.m.r (CDCl₃) δ 13.71 (CH₃-furan), 28.14 (CH₃-oxazol.), 31.35 (CH₂-Ph), 66.59 (C4 oxazol.), 79.03 (C5 oxazol.), 110.13 (C4 furan), 126.01 (C3 furan), 128.25, 128.48, 128.52, 131.23 (Ph), 137.29 (C2 furan), 155.51 (C=N), 157.98 C5. Anal. Calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11.Found: 75.94; H, 7.32.

2-(4,4-Dimethyl-2-oxazolin)-5-methyl-3-furancarboxylic acid (2f)

Reaction of 2b with solid CO₂ (1.0 g) gave compound 2f in 70% yield: mp 143-145 $^{\circ}$ C (hexane-ethyl acetate); IR (KBr) 3200-2800, 1700, 1680, 1600, 1560, 750 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.42 (s, 6H, CH₃-oxazol.), 2.36 (s, 3H, CH₃-furan), 4.28 (s, 6H, CH₂ oxazol.), 6.68 (s, 1H, H4 furan); ¹³C N.m.r (CDCl₃) δ 13.56 (CH₃-furan), 28.02 (CH₃-oxazol.), 67.13 (C4 oxazol.), 80.63 (C5 oxazol.), 111.38 (C3 furan), 115.16 (C4 furan), 144.54 (C2 furan), 155.41 (C5 furan), 156.94 (C=N), 161.67 (CO₂H). Anal. Calcd for C₁₁H₁₃NO₄: C, 59.18; H, 5.87. Found: C, 58.93; H, 6.14.

<u>2-(4-tert-Butyl-3,5-dimethyl-2-furyl)-4,4-dimethyloxazoline</u> (4c)

Compound 4c was prepared analogously from 3a, stirring the reaction mixture for 4 h at -78 °C prior to the introduction of methyl iodide, in 50% yield: IR (thin film) 1670, 1600, 1540, 750 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.25 (s, 9H, tert-Bu), 1.35 (s, 6H, CH₃ oxazol.), 2.39 (s, 3H, CH₃-C3 furan), 2.43 (s, 3H, CH₃-C5 furan), 4.04 (s, 2H, CH₂); ¹³C N.m.r (CDCl₃) δ 11.03 (CH₃-C3 furan), 13.54 (CH₃-C5 furan), 28.14 (CH₃-oxazol.), 29.92 (<u>C</u>(CH₃)₃), 30.71 (C(<u>CH₃)₃</u>), 67.35 (C4 oxazol.), 78.80 (C5 oxazol.), 127.07 (C3 furan), 133.25 (C4 furan), 136.92 (C2 furan), 149.74 (C5 furan), 154.97 (C=N). Anal. Calcd for C₁₅H₂₃NO₂: C, 72.25; H, 9.23. Found: C, 72.03; H, 9.06.

Synthesis of Furyloxazolines (3a,b), (4a,b) and (5). General Procedure.

To a solution of the corresponding oxazoline (0.84 mmol) in 3 mL of CS_2 were added 182 mg (1.87 mmol) of AlCl₃ and the corresponding electrophile (1.05 mmol). The mixture was refluxed for 6 h, poured into cold water (10 mL) and extracted with methylene chloride (3 x 10 mL). The combined extracts were washed with water and brine, dried $(MgSO_4)$, and evaporated. The residue was percolated on silica gel with 1:1 hexane/ethyl acetate as the eluent.

The following oxazolines were prepared by this method.

<u>2-(4-</u>^tButyl-5-methyl-2-furyl)-4,4-dimethyloxazoline (3a)

Reaction of 2b with ^tbutyl chloride gave 168 mg of compound 3a (80%) as a light yellow oil: IR (thin film) 1680, 1590, 1550, 750 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.24 (s, 9H, tert-butyl), 1.34 (s, 6H, CH₃-oxazol.), 2.41 (s, 3H, CH₃-furan), 4.02 (s, 2H, CH₂), 6.82 (s, 1H, H3 furan); ¹³C N.m.r (CDCl₃) δ 13.62 (CH₃-furan), 28.26 (CH₃-oxazol.), 29.86 (<u>C</u>(CH₃)₃), 30.63 (C(<u>C</u>H₃)₃), 67.38 (C4 oxazol.), 78.88 (C5 oxazol.), 115.49 (J_{CH}= 174.2 Hz, C3 furan), 131.89 (C4 furan), 138.93 (C2 furan), 149.71 (C5 furan), 155.44 (C=N). Anal. Calcd for C₁₄H₂₇NO₂: C, 69.66; H, 11.27. Found: C 69.82; H, 11.41.

2-(4-Acetyl-5-methyl-2-furyl)-4,4-dimethyloxazoline (3b).

Compound 3b was analogously prepared from 2b and acetyl chloride, in 75% yield (oil): IR (thin film) 2850, 1680, 1600, 1540, 750 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.40 (s, 6H, CH₃-oxazol.), 2.37 (s, 3H, CH₃-furan), 2.87 (s, 3H, CH₃CO), 4.11 (s, 2H, CH₂), 7.15 (s, 1H, H3 furan); ¹³C N.m.r (CDCl₃) δ 14.43 (CH₃-furan), 28.11 (CH₃-oxazol.), 28.90 (CH₃CO), 67.77 (C4 oxazol.), 79.13 (C5 oxazol.), 114.26 (J_{CH}= 178.5 Hz, C3 furan), 122.48 (C4 furan), 140.63 (C2 furan), 153.84 (C=N), 161.00 (C5 furan), 193.21 (CO). Anal. Calcd for C_{12H15}NO₃: C, 6514; H, 6.83. Found: C, 65.23; H, 6.91.

2-(4-Acety]-3,5-dimethyl-2-furyl)-4,4-dimethyloxazoline (4a)

Compound 4a was analogously prepared from 2c and acetyl chloride in 65% yield (oil): IR (thin film) 2830, 1670, 1600, 1550 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.36 (s, 6H, CH₃-oxazol.), 2.23 (s, 3H, CH₃-C3 furan), 2.29 (s, 3H, CH₃-C5 furan), 2.91 (s, 3H, CH₃CO), 4.05 (CH₂); ¹³C N.m.r (CDCl₃) δ 10.75 (CH₃-C3 furan), 13.87 (CH₃-C5 furan), 28.34 (CH₃-oxazol.), 67.71 (C4 oxazol), 78.65 (C5 oxazol), 125.55 (C4 furan), 126.78 (C3 furan), 137.17 (C2 furan), 159.32 (C5 furan), 154.01 (C=N), 192.57 (CO). Anal. Calcd for C₁₃H₁₈NO₃: C, 66.08; H, 7.68. Found: C, 66.39; H, 7.39.

2-(4-Acetyl-3-allyl-5-methyl-2-furyl)-4,4-dimethyloxazoline (4b).

Compound 4b was prepared analogously from 2d and acetyl chloride in 55% yield (oil): IR (thin film) 2840, 1680, 1660, 1610, 1540, 930 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.38 (s, 3H, CH₃-oxazol.), 2.24 (s, 3H, CH₃-furan), 2.31 (s, 3H, CH₃CO), 3.11 (d, J = 6.5 Hz, 2H, CH₂-furan), 4.04 (s, 2H, CH₂ oxazol.), 5.05 (m, 2H, CH₂=), 6.02 (m, 1H, CH=); ¹³C N.m.r (CDCl₃) δ 14.72 (CH₃-furan), 28.14 (CH₃-oxazol.), 28.86 (CH₃CO), 29.76 (CH₂-furan), 67.75 (C5 oxazol.), 78.99 (C4 oxazol.), 116.03 (CH₂=), 124.04 (C4 furan), 127.32 (C3 furan), 136.23 (CH=), 137.41 (C2 furan), 154.89 (C=N), 161.03 (C5 furan). Anal. Calcd for C₁₅H₂₀NO₃: C, 68.68; H, 7.68. Found: C, 68.96; H, 7.84.

2-[3-(4-Acetylbenzyl)-5-methyl-2-furyl]-4,4-dimethyloxazoline (5).

Compound 5 was analogously prepared from 2e and acetyl chloride in 60% yield (oil): IR (CCl₄) 2840, 1710, 1690, 1640, 1550 cm⁻¹; ¹H N.m.r (CDCl₃) δ 2.30 (s, 3H, CH₃-furan), 2.58 (s, 3H, CH₃CO), 4.05 (s, 2H, CH₂ oxazol.), 4.15 (s, 2H, CH₂-Ph), 5.82 (s, 1H, H4 furan), 7.31 (d, J= 9.5 Hz, 2H, H3 Ph), 7.88 (d, J = 9.5, 2H, H2 Ph); ¹³C N.m.r (CDCl₃) δ 13.74 (CH₃-furan), 28.28 (CH₃-oxazol.), 32.01 (CH₂-Ph), 66.86 (C4 oxazol.), 79.13 (C5 oxazol.), 110.65 (C4 furan), 127.14 (C3 furan), 128.63, 128.78 (C2, C3 Ph), 135.55 (C1 Ph), 137.32 (C2 furan), 138.03 (C4 Ph), 155.61 (C=N), 158.14 (C5 furan). Anal. Calcd for C₁₉H₂₁NO₃: C, 73.29; H, 6.79. Found: C, 73.51; H, 6.83.

2-(4-Bromo-5-methyl-2-furyl)-4,4-dimethyloxazoline (3c).

To a solution of 200 mg (1.12 mmol) of 2b in 5 mL of methylene chloride were added 244 mg (2.5 mmol) of AlCl₃ and 0.07 mL (1.4 mmol) of bromine. The mixture was stirred at room temperature for 24 h, poured into cold water (20 ml) and extracted with methylene chloride (3 x 20 mL). The combined extracts were washed with 40% sodium bisulfite solution, water and brine, dried (MgSO₄), and evaporated. The residue was percolated on silica gel with 1:1 hexane/ethyl acetate as eluent, giving 240 mg of 3c (80%) as a light yellow oil: IR (CCl₄) 1680, 1590, 1540 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.36 (s, 6H, CH₃-oxazol.), 2.34 (s, 3H, CH₃-furan), 4.05 (CH₂), 6.84 (s, 1H, H3 furan); ¹³C N.m.r (CDCl₃) δ 12.03 (CH₃-furan), 28.15 (CH₃-oxazol.), 67.64 (C4 oxazol.), 79.05 (C5 oxazol.), 97.66 (C4 furan), 117.36 (J_{CH}=182.0 Hz, C3 furan), 141.60 (C2 furan), 152.78 (C5 furan), 153.69 (C=N). Anal. Calcd for C₁₀H₁₂BrO₂N: C, 46.53; H, 4.68. Found: C, 46.64; 4.72.

4,4-Dimethyl-(4,5-dimethyl-2-furyl)oxazoline (3d)

To a solution of ^tBuLi 0.43 M in hexane (2.68 ml, 1.16 mmol) at -78 °C was added dropwise 2.3 mL of a 1:1.3 solution of oxazoline 3c (150 mg, 0.58 mmol) in hexane-Et₂O. After stirring for 15 min at -78 °C, CH₃I (0.5 mL) was added and the mixture was stirred for 1 h further at -78 °C and then for 12 h at room temperature. The solvent was then removed under reduced pressure, and the product extracted from the residue with ether (3 x 50 mL). The ether extracts were washed with brine, dried (MgSO₄) and evaporated. The residue was percolated on silica gel with 2:1 hexane/ethyl acetate as the eluent, giving compound 3d in 70% yield as a light yellow oil: IR (thin film) 1670, 1600, 1550, 850, 750 cm⁻¹; ¹H N.m.r (CDCl₃) δ 1.35 (s, 6H, CH₃-oxazol.), 1.95 (s, 3H, CH₃-C3 furan), 2.25 (s, 3H, CH₃-C5 furan), 4.03 (s, 2H, CH₂), 6.69 (s, 1H, H3 furan); ¹³C N.m.r (CDCl₃) δ 11.84 (CH₃-C4 furan), 14.05 (CH₃-C5 furan), 28.28 (CH₃-C4 oxazol.), 67.43 (C4 oxazol.), 78.88 (C5-oxazol.), 116.24 (C4 furan), 117.40 (J_{CH}= 174.02 Hz, C3 furan), 139.02 (CC2 furan), 151.37 (C5 furan), 154.88 (C=N). Anal. Calcd for C₁₁H₁₅NO₂: C, 68.37; H, 7.82. Found: C, 68.46; H, 7.93

Acknowledgements: This investigation was supported by the CICYT, grant No. PB890099. Prof. A. Gaset (ENSCT-INP, Toulouse) is gratefully acknowledged for his valuable discussions.

REFERENCES AND NOTES

- For recent reviews on furan chemistry, see: a) Sargent, M.V. and Cresp, M.T. in Comprehensive Organic Chemistry. The Synthesis and Reactions of Organic Compounds; Barton, D.H.R.; Ollis, W.D., Ed.; Pergamon Press: New York 1979; Vol 4, pg 693. b) Dean, F.M. Adv.Het.Chem., 1982, 30, 167. c) Dean, F.M. ibid., 1982, 31, 237. d) Donnelly, D.M.X. and Meegan, M.J. in Comprehensive Heterocyclic Chemistry; Katritzky, A.R.; Rees, C.W., Ed.; Pergamon Press: New York, 1984; Vol 4. e) Craig, D. Chem.Soc.Rev., 1987, 16, 187.
- 2. Lipshutz, B.H. Chem. Rev., 1986, 795
- For some recent references, see: a) Honda, T.; Kobayashi, Y.; Tsubuki, M. Tetrahedron Lett., 1990, 31, 4891. b) Ireland, R.E.; Wipf, P.; Miltz, M.; Vanasse, B. J.Org.Chem., 1990, 55, 1423. c) Bock, I.; Bornowski, H.; Ranft, A.; Theis, H. Tetrahedron, 1990, 46, 1199. d) Ennis, D.S. and Gilchrist, T.L. Tetrahedron, 1990, 46, 2623. e) Fuji,K.; Khanapure, S.P.; Node, M.; Kawabata, T.; Itoh, A.; Masaki,Y.

Tetrahedron, 1990, 46, 7393. f) Alonso, F. and Yus, M. Tetrahedron, 1991, 47, 313. g) Maier, M.E. and Schöfling, B. Tetrahedron Lett., 1991, 32, 53.

- 4. For some recent reports on the synthesis of tri- and tetrasubstituted furan derivatives, see: a) Paterson, I.; Gardner, M.; Banks, B.J. Tetrahedron, 1989, 45, 5283. b) Jefford, C.W.; Jaggi, D.; Boukovalas, J. Tetrahedron Lett., 1989, 30, 1237. c) Winberg, H. and Wiersum, H.E. J.Chem.Soc. Chem.Commun., 1990, 460. d) Padwa, A.; Murphree, S.S.; Yeske, P.E. J.Org.Chem., 1990, 55, 4241. e) Srikrishna, A. and Sondarababu, G. Tetrahedron, 1990, 46, 7901. f) Haarmann, H. and Eberbach, W. Tetrahedron Lett., 1991, 32, 903.
- 5. Snieckus, V. Chem. Rev., 1990, 90, 880 and references therein cited.
- Goldfarb, J.L.; Volkenstein, J.B.; Belenkij, L.I. Angew. Chem. internat. Edit., 1968, 7, 519.
- 7. Carpenter, A.J. and Chadwick, D.J. Tetrahedron, 1985, 41, 3803.
- Recovery of the aldehyde functionality is desirable in order to further functionalize the molecule via Wittig or aldolic like reactions. See for example: a) Dominguez,C.; Csáky,A.G.; Magano, J.; Plumet, J. Synthesis, 1989, 172; b) Hernández-Fuentes, I.; Abradelo, C.; Domínguez, C.; Csáky, A.G.; Plumet, J.; Cativiela, C.; Mayoral, J.A.; Gaset, A.; Rigal, L. Heterocycles, 1989, 29, 657.
- 9. Pedersen, E.B. J.Chem.Soc., Perkin Trans. II, 1977, 473. In this discussion, secondary effects, such as solvation, have been neglected.
- 10.Meyers, A.I.; Himmelsbach, R.J.; Reuman, M. J.Org.Chem., 1983, 48, 4053.
- 11. Chadwick, D.J.; McNight, M.V.; Ngochindo, R. J. Chem.Soc. Perkin Trans. I, 1982, 1343.
- 12. It has to be pointed out that treatment of furyloxazoline 3d either with BuLi or ^tBuLi in Et₂O or THF at -78 °C followed by CH₃I quenching gave rise to complete polymerization of the crude product.
- 13.Smith A.B.III; Schow, S.R.; Bloom, J.D.; Thompson, A.S.; Winzenberg, K.N. J. Am. Chem. Soc., 1982, 104, 4015
- 14.Reuman, M. and Meyers, A.I. Tetrahedron 1985, 41, 837
- 15.Selected ¹³C-NMR data recorded for 4,4-dimethyl-2-(3-methyl-4-methoxyphenyl)oxazoline: $\delta = 127.3$ (C6 Ph, 163.2 Hz); 130.5 (C2 Ph, 159.1 Hz)