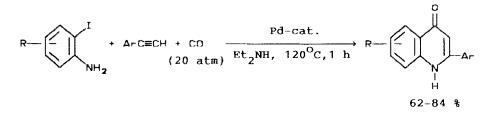
0040-4039/92 \$3.00 + .00 Pergamon Press plc

A NEW ROUTE TO 2-ARYL-4-QUINOLONES VIA PALLADIUM-CATALYZED CARBONYLATIVE COUPLING OF O-IODOANILINES WITH TERMINAL ARYLACETYLENES


V.N.Kalinin^{*}, M.V.Shostakovsky, and A.B.Ponomaryov

Nesmeyanov Institute of Organoelement Compounds 117813,Vavilova 28, Moscow, USSR

Abstract: 0-Iodoanilines undergo Pd-catalyzed intramolecular heterocyclization with terminal arylacetylenes in the presence of carbon monoxide to give 2-aryl-4-quinolones.

Substituted 4-quinolones demonstrate various pharmacological activity¹. The general method for preparation of 2-substituted 4-quinolones is a condensation reaction of anilines with β -ketoesters followed by cyclization of β -anilinoacrylates formed². In the case of 2-phenyl-4-quinolone the application of 2,2-dimethyl-5-methyl-thiobenzy-lidene-1,3-dioxan-4,6-dione instead of β -ketoester is more effective³. Heterocyclization of 2'-aminochalcones under the action of stoichiometric amount of Pd(II) complexes also gives 2-aryl-4-quinolones in good yields⁴.

Now we present a novel conveniuent preparative method of synthesis of these compounds by carbonylation of a mixture of o-iodoanilines and therminal arylacetylenes in the presence of a palladium catalyst:

Various o-iodoanilines and therminal arylacetylenes give 2-aryl-4-quinolones in good yields (table 1). It should be noted that o-iodoanilines react both as a base and hydrochloride form (entries 2,7), the yield of the product being decreased in the latter case (entries 1,2). To study the conditions under which 2-aryl-4-quinolones are formed the interaction between phenylacetylene and o-iodoaniline was chosen as a model reaction. The carbonylation of phenylacetylene and o-iodoaniline (120 O C, 20 atm, 1 h) proceeds both in secondary and tertiary amines (diethylamine- 83%, triethylamine - 70%, piperidine - 60%, morpholine - 61%) and in organic solvents (benzene - 68%, HMPA - 21%) containing 4 eq. of diethylamine.

Among palladium catalysts tested the complex $PdCl_2(dppf)$ ($dppf=1,1'-bis(diphenylphosphino)ferrocene) proved to be the most effective (entry 1). When <math>PdCl_2(PPh_3)_2$ and $PdCl_2(CH_3CN)_2$ were used as the catalysts the yields of 2-phenyl-4-quinolone were 74 % and 55 % respectively. It's interesting to note that the common palladium (II) chloride showed significant catalytic activity (60 % of 2-phenyl-4-quinolone were formed).

The decrease in carbon monoxide pressure down to 5 atm practically does not influence on the yield of the product (76 %), however when the reaction is carried out at 1 atm of carbon monoxide the yield of the product was 33 % only.

The decrease in the temperature of the reaction decreases the rate of the process. For example, 43 % of 2-phenyl-4-quinolone is formed at 60° C (20 atm CO, 1 hour).

It should be noted that the starting materials for the reaction presented are widely available since a number of o-iodoanilines are easily formed by the direct reaction of iodine with appropriate anilines⁶, and several conveniuent methods of synthesis of terminal arylacetylenes have been developed now⁷.

TYPICAL PROCEDURE

4-Methyl-2-iodoaniline (1.00 g, 4.29 mmol), phenylacetylene (0.86 g, 8.58 mmol), diethylamine (15 ml), and $PdCl_2(dppf)$ (0.031 g, 0.0429 mmol) were placed into 100 ml stainless steel autoclave. The mixture was stirred under CO (20 atm) at $120^{\circ}C$ for 1 hour. After cooling product formed was collected by suction and purified by recrystallization from ethanol. 6-Methyl-2-phenyl-4-quinolone (0.71 g, 70%) was obtained as white crystals. M.p. 291-293°C, lit. m.p. 296-297°C⁵.

374

		Synthesis of 2-ary	l 4-quinolones ^a		Table 1
Entry	Aniline	Arylacetylene	Product ^b	Yield {isolated	d,% ^C yield,%)
1	K NH ₂	C=CH		d O	83 (70)
2	NH2	. HCI	H		77
3	K NH	сн₃о-{○}-с≡сн		е {О}осн ₃	69
4	NH ₂	CH3C0 C≡CH		COCH	3 67
5	I NH2	CECH		r G	63
6	CH3-	h ())-с≡сн н₂			84 (70)
7		h -NH ₂ .HCI		i -N _H	62

^a2-Iodoaniline (0.91 mmol), terminal arylacetylene (1.83 mmol), diethylamine (3 ml), and PdCl₂(dppf) (0.091 mmol) were placed into the autoclave and heated at 120[°]C under CO (20 atm) for 1 hour. ^bThe products were characterized by ¹H NMR-, mass-, and IR-spectra.^CYield was determined by TLC and UV-spectroscopy.^dM.p. 253.5[°]C (EtOH), lit.m.p. 254[°]C⁵. ^eM.p. 294-296[°]C (EtOH), lit.m.p.236 238 c^{°4}.^fM.p.267-269[°]C (EtOH).⁹M.p.284-285[°]C (EtOH).^hNote 6. ⁱ5 mol.% of PdCl₂(dppf) were used; m.p. 272.5-274[°]C (DMF).

REFERENCES AND NOTES

- a) Osawa, T.; Ohta, H.; Akimoto, K.; Harada, K.; Soga, H.; Jinno,
 Y. Eur. Pat. Appl. EP 343,547. CA, 1990, 112, 235197g.
 - b) Hiraki, U.; Hisashi, M.; Hiroshi, Y.; Hitoshi, T. Eur. Pat. Appl. EP 287,951. CA, 1989, 110, 173109k.
- a) Leonard, N.J.; Herbrandson, H.F.; Van Heyningen, E.M. J.Am.Chem.Soc., 1946, 68, 1279.
 - b) Reitsema, R.H. Chem. Rew., 1948, 43, 43.
- 3. Chen, B.; Huang, X.; Wang, J. Synthesis, 1987, 482.
- Kasahara, A.; Izumi, T.; Watabe, H.; Takahashi, S. Chem & Ind, 1981, 121.
- 5. Staskun, B.; Israelstam, S.S. J. Org. Chem., 1961, 26, 3191.
- 2 Iodoanilines were obtained by direct iodination of appropriate anilines according to procedure described in Org.Synth., Coll.vol. 2, 347.
- a) Bumagin, N.A.; Ponomaryov, A.B.; Beletskaya, I.P. Synthesis, 1984, 728.
 - b) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis, 1980, 627.
 - c) Bardamova, M.I.; Trotsenko, Z.P.; Kotlyarevskii, I.L. Izv. Akad. Nauk SSSR, Ser. Khim., 1982, 1184. CA, 1982, 97, 109622h.
 - d) King, A.O.; Negishi, E. J. Org. Chem., 1978, 43, 358.

(Received in Japan 30 May 1991)