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Abstract: Use of photolabile acetal protecting groups enables the
synthesis of glycolaldehyde di- and triphosphate 4 and 5, which un-
dergo enolisation at significantly lower pH values than glycolalde-
hyde phosphate 1. At pH > 10, 5 is converted to 1 and inorganic
pyrophosphate.
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The aldolisation of glycolaldehyde phosphate 1 in the
presence of formaldehyde has been shown by Eschen-
moser et al. to constitute an efficient route to pentose-2,4-
diphosphates with ribose-2,4-diphosphate 2 predominat-
ing.1 The sequence involves reaction of glycolaldehyde
phosphate with formaldehyde to give glyceraldehyde-2-
phosphate 3 which acts as an aldol acceptor to a second
molecule of 1 (Scheme 1).

Scheme 1

An aldolisation route to nucleic acid backbones would
gain credence as a potentially prebiotic pathway if it could
be shown to operate under conditions at which nucleic ac-
ids (in particular RNA) are stable. The phosphorylation of
glycolaldehyde using amidotriphosphate2 and the aldol re-
action of 3 with 1 in the presence of double layer metal hy-
droxide minerals3 both fulfil this criterion, taking place in
aqueous solutions at near neutral pH. The aldol reaction of
1 with formaldehyde however only proceeds in a strongly
alkaline medium,1 conditions under which RNA is hydro-
lytically labile. In connection with related work we had
cause to prepare glycolaldehyde diphosphate 4 and glyco-
laldehyde triphosphate 5 the properties of which suggest a
possible solution to this problem.

Alkylation of tris(tetra-n-butylammonium) hydrogen py-
rophosphate with dimethylallyl bromide in dry acetoni-
trile as described by Dixit et al.4 furnished dimethylallyl
diphosphate 6 which was purified by ion-exchange chro-

matography (Dowex® 1X8-400 eluting with an aqueous
ammonium bicarbonate gradient) and then converted to
the tetramethylammonium salt (treatment with H-
Dowex® followed by titration to pH 7 with tetramethy-
lammonium hydroxide solution). Ozonolysis in methanol
at –78 °C followed by reductive work-up then provided 4
contaminated with ca. 10% 1 as judged by 1H and 31P
NMR (Scheme 2).1,5 No resonances for non-hydrated al-
dehydic protons were observed in the 1H NMR spectrum
indicating that both species were > 95% hydrated. It is not
clear how 1 is formed during this procedure although it is
possible that a carbonyl oxide or �-methoxy-hydroperox-
ide attacks the �-phosphorus nucleophilically resulting in
pyrophosphate cleavage.6 Fortuitously the monophos-
phate 1 served as a convenient internal standard in subse-
quent experiments. Although dimethylallyl triphosphate
was successfully prepared by alkylation of tetrakis(tetra-
n-butylammonium) hydrogen triphosphate, subsequent
ozonolysis with reductive work-up gave at least four gly-
colaldehyde derivatives by 1H NMR.

Scheme 2 Reagents and conditions: i) O3, MeOH, –78 ºC; ii) Me2S;
iii) repeated evaporation from H2O; iv) Na-Dowex®

Investigation of the sample of 4 containing 1 by 1H NMR
(in D2O) revealed that the �-protons of 4 fully exchange at
20 °C, pD 8.0 after 4 days (t1/2 ca. 20 h) whereas those of
1 do not (Figure 1). The greater electron-withdrawing ca-
pacity of the diphosphate group compared to the mono-
phosphate group is probably responsible for this
phenomenon. The increase in electron-withdrawal pre-
sumably biases the hydration equilibrium of 4 in favour of
hydrate further than that of 1 but the residual aldehyde of
4 is rendered intrinsically more prone to enolisation than
the residual aldehyde of 1. Evidently the effect on intrinsic
enolisation rate outweighs the effect on the hydration
equilibrium. This extremely subtle electron-demand/hy-
dration controlled enolisation chemistry prompted us to
establish a secure synthetic route to 5 and a cleaner route
to 4.

Unable to use late stage ozonolysis to reveal the sensitive
aldehyde groups of 4 and 5, we developed a strategy based
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upon the use of photolabile protecting groups. Benzoyl
glycolaldehyde 7 was prepared conveniently by quantita-
tive dibenzoylation of Z-but-2-ene-1,4-diol followed by
ozonolysis with reductive work-up in 86% yield. The
bis(o-nitrobenzyl) acetal 8 was obtained in 70% yield us-
ing Noyori’s procedure;7,8 other methods were unsuccess-
ful (Scheme 3). Saponification of the ester function of 8 in
75% yield followed by careful triflylation (quantitative)
gave the key intermediate 9. Displacement of the triflate
with tris(tetra-n-butylammonium) hydrogen pyrophos-
phate followed by reverse-phase HPLC gave the acetal 10
in 16% yield (compromised for purity). Deprotection at
pH 4.5 by irradiation with a standard slide projector in a
biphasic solvent system9 proceeded smoothly to give 4 in
quantitative yield and a high state of purity as judged by
1H and 31P NMR. All data were consistent with those ob-
tained from the route outlined in Scheme 2.5 Displace-
ment of the triflate with tetrakis(tetra-n-butylammonium)
hydrogen triphosphate was successful and, after similar
HPLC purification, 11 was obtained in 33% yield (again
compromised for purity) from 9. Photolytic deprotection
of 11 proceeded smoothly and the triphosphate 5 was ob-
tained in quantitative yield, in a high state of purity as
judged by 1H and 31P NMR.10

With pure samples of 4 and 5 in hand, an investigation of
their solution behaviour was undertaken. The two com-
pounds were found to undergo comparable H/D exchange
(t1/2 ca. 20 h) in D2O at 20 °C, pD 8.0; conditions under
which 1 remains unchanged. Further studies were carried
out with 5 at higher pH values. At pH 10 and above, 5 was
observed to hydrolyse to 1 and inorganic pyrophosphate
(1H, 31P NMR) with a half-life of ca. 1 hour at pH 10.5,
20 °C. Since the hydrolysis is not seen below pH 10 and

the gem-diol of 5 is likely to have a pKa near 10 it is prob-
able that the hydrolysis mechanism involves attack of the
hydrate alkoxide on the �-phosphorus atom resulting in
the displacement of inorganic pyrophosphate and the for-
mation of the cyclic intermediate 12 which can then ring-
open to 1 (Scheme 4).11

Scheme 4 Proposed mechanism for the conversion of 5 to 1

The ease with which 5 enolises coupled with its propensi-
ty for hydrolysis suggests that it might be possible at low-
er pH values, where RNA is stable, for 5 to aldolise with
formaldehyde  giving glyceraldehyde-2-triphosphate
which could then hydrolyse to 3. Current work is aimed at
addressing this possibility and at investigating possible
prebiotic routes to 5.
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Figure 1 1H NMR spectra (500 MHz, D2O, pD 8.0 with HOD sup-
pression) of a mixed sample containing 1 and 4 (1:9) maintained at
20 °C; a) t = 0, b) t = 4 days

4 (CH2)4 (CH)

1 (CH2)1 (CH)

Scheme 3 Reagents and conditions: i) BzCl, pyridine; ii) O3,
CH2Cl2, –78 ºC; iii) Me2S; iv) o-NO2-C6H4CH2OSiMe3,
Me3SiOSO2CF3, –78 ºC to r.t. (over 3 h); v) LiOH (1 M), H2O/1,4-
dioxan (1:1); vi) (CF3SO2)2O, pyridine/CH2Cl2, 0 ºC, 2 min (HCl(aq.)

(1 M) quench); vii) (Bun
4N)3HP2O7, CH3CN; viii) (Bun

4N)4HP3O10,
CH3CN; ix) HPLC (C-18: Et3NH�HCO3 (50 mM), CH3CN gradient);
x) Na-Dowex®; xi) h�, EtOAc:dil. HCl(aq.) (pH 4.5)
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